如图,已知AD是∠BAC的平分线,DE,DF分别是△ABD和△ACD的高,求证:AD垂直平分EF。

妙酒
2011-11-03 · TA获得超过186万个赞
知道顶级答主
回答量:42万
采纳率:93%
帮助的人:23.9亿
展开全部
证法1:AD平分∠BAC,DE垂直AB,DF垂直AC.则DE=DF.
又AD=AD,故Rt⊿AED≌Rt⊿AFD(HL),得AE=AF.
所以,AD垂直平分EF.(等腰三角形三线合一)

证法2:∠AED=∠AFD=90度;AD=AD;∠EAD=∠FAD.
则⊿EAD≌⊿FAD(AAS),得AE=AF.
故AD垂直平分EF.(等腰三角形三线合一)

证法3:DE垂直AB,DF垂直AC,∠EAD=∠FAD.
则DE=DF(角平分线的性质);且∠EDA=∠FDA(等角的余角相等).
所以,AD垂直平分EF.(等腰三角形三线合一)
易金稀有金属制品
2024-11-04 广告
CrCoNi中熵合金具有优异的耐蚀性、抗辐照性能和室温低温塑韧性,但铸态CrCoNi合金在室温和高温下强度较低,限制了其应用。针对这一问题,北京易金新材料科技有限公司通过调整合金成分和优化工艺条件,提高了CrCoNi中熵合金的强度和硬度。例... 点击进入详情页
本回答由易金稀有金属制品提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式