数学题,,,高一的,已知函数f(x)=mx^2+2/3x+n是奇函数,
已知函数f(x)=mx^2+2/3x+n是奇函数,且f(2)+5/3。(1)求实数m和n的值;(2)判断函数f(x)在1到正无穷大上区间的单调性,并加以证明。...
已知函数f(x)=mx^2+2/3x+n是奇函数,且f(2)+5/3。(1)求实数m和n的值;(2)判断函数f(x)在1到正无穷大上区间的单调性,并加以证明。
展开
1个回答
展开全部
∵f(x)=(mx^2+2)/(3x+n)是奇函数,且f(2)=5/3, ∴f(-x)=-f(x),即有
(mx^2+2)/(-3x+n)=-(mx^2+2)/(3x+n).
故有-3x+n=-(3x+n),从而得到n=0.
又f(2)=(4m+2)/6=5/3,∴m=2.
故f(x)=(2x^2+2)/3x=(2/3)(x+1/x).
设x1<x2是(-∞,0)上的任意两点,由f(x2)-f(x1)=(2/3)[(x2+1/x2)-(x1+1/x1)]=(2/3)[(x2-x1)-(1/x1-1/x2)]=(2/3)[(x2-x1)-(x2-x1)/x1x2]=(2/3)(x2-x1)(1-x1x2)/x1x2.
其中x2-x1>0,x1x2>0(∵x1<0,x2<0),∵f(x2)-f(x1)的符号取决于1-x1x2
的符号.
当-∞<x1<x2<-1时,x1x2>1,即1-x1x2<0,从而f(x2)-f(x1)<0,即 f(x)在
(-∞,-1)内是减函数;当-1≤x1<x2≤0时,x1x2<1,即1-x1x2>0,从而f(x2)-f(x1)>0,即在[-1,0]内f(x)是增函数.
绝对的答案的。。谢谢··
(mx^2+2)/(-3x+n)=-(mx^2+2)/(3x+n).
故有-3x+n=-(3x+n),从而得到n=0.
又f(2)=(4m+2)/6=5/3,∴m=2.
故f(x)=(2x^2+2)/3x=(2/3)(x+1/x).
设x1<x2是(-∞,0)上的任意两点,由f(x2)-f(x1)=(2/3)[(x2+1/x2)-(x1+1/x1)]=(2/3)[(x2-x1)-(1/x1-1/x2)]=(2/3)[(x2-x1)-(x2-x1)/x1x2]=(2/3)(x2-x1)(1-x1x2)/x1x2.
其中x2-x1>0,x1x2>0(∵x1<0,x2<0),∵f(x2)-f(x1)的符号取决于1-x1x2
的符号.
当-∞<x1<x2<-1时,x1x2>1,即1-x1x2<0,从而f(x2)-f(x1)<0,即 f(x)在
(-∞,-1)内是减函数;当-1≤x1<x2≤0时,x1x2<1,即1-x1x2>0,从而f(x2)-f(x1)>0,即在[-1,0]内f(x)是增函数.
绝对的答案的。。谢谢··
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询