正态分布是如何定义的?
展开全部
正态分布的分布函数:若随机变量X服从一个位置参数为μ、尺度参数为σσ的概率分布,且其概率密度函数为f(x)=12π√σe(xμ)22σ2。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
正态分布特征函数特性:
1)集中性:曲线的最高峰位于正中央,且位置为均数所在的位置。
2)对称性:正态分布曲线以均数所在的位置为中心左右对称且曲线两段无线趋近于横轴。
3)均匀变动性:正态分布曲线以均数所在的位置为中心均匀向左右两侧下降。
4)曲线与横轴间的面积总等于1。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询