行列式的值怎么求?
1个回答
展开全部
解:由题意,A31、A32、A33、A34是行列式D第三行元素的代数余子式。其中D=
3 1 -1 2
-5 1 3 -4
2 0 1 -1
1 -5 3 -3
现构造一个新的行列式G,使G=
3 1 -1 2
-5 1 3 -4
1 3 -2 2
1 -5 3 -3
∴G与D除了第三行元素不同,其余元素均对应相等。
根据行列式的性质,G第三行元素的代数余子式与D第三行元素代数余子式也对应相等。
即,G按第三行展开,得
G = A31+ 3*A32 - 2*A33 +2* A34………………………………………………(*)
【现在求行列式G的值】
首先,依次将G的第一、三行,第二、四行对换,得
1 3 -2 2
1 -5 3 -3
3 1 -1 2
-5 1 3 -4
再用第二行减去第一行,第三行减去第一行的 3 倍,第四行加上第一行的 5 倍,得
1 3 -2 2
0 -8 5 -5
0 -8 5 -4
0 16 -7 6
再用第三行减去第二行,第四行加上第二行的 2 倍,得
1 3 -2 2
0 -8 5 -5
0 0 0 1
0 0 3 -4
第四行乘以(- 1),再将第三、四行对换,得
1 3 -2 2
0 -8 5 -5
0 0 -3 4
0 0 0 1
∴G = 1 * (- 8)* (- 3)* 1 = 24
代入(*)式,得
A31+ 3*A32 - 2*A33 +2* A34 = 24
*********以后你会解这类题目了吧 O(∩_∩)O
3 1 -1 2
-5 1 3 -4
2 0 1 -1
1 -5 3 -3
现构造一个新的行列式G,使G=
3 1 -1 2
-5 1 3 -4
1 3 -2 2
1 -5 3 -3
∴G与D除了第三行元素不同,其余元素均对应相等。
根据行列式的性质,G第三行元素的代数余子式与D第三行元素代数余子式也对应相等。
即,G按第三行展开,得
G = A31+ 3*A32 - 2*A33 +2* A34………………………………………………(*)
【现在求行列式G的值】
首先,依次将G的第一、三行,第二、四行对换,得
1 3 -2 2
1 -5 3 -3
3 1 -1 2
-5 1 3 -4
再用第二行减去第一行,第三行减去第一行的 3 倍,第四行加上第一行的 5 倍,得
1 3 -2 2
0 -8 5 -5
0 -8 5 -4
0 16 -7 6
再用第三行减去第二行,第四行加上第二行的 2 倍,得
1 3 -2 2
0 -8 5 -5
0 0 0 1
0 0 3 -4
第四行乘以(- 1),再将第三、四行对换,得
1 3 -2 2
0 -8 5 -5
0 0 -3 4
0 0 0 1
∴G = 1 * (- 8)* (- 3)* 1 = 24
代入(*)式,得
A31+ 3*A32 - 2*A33 +2* A34 = 24
*********以后你会解这类题目了吧 O(∩_∩)O
亚远景信息科技
2024-12-11 广告
2024-12-11 广告
上海亚远景信息科技有限公司是国内汽车行业咨询及评估领军机构之一,深耕于ASPICE、敏捷SPICE、ISO26262功能安全、ISO21434车辆网络安全领域,拥有20年以上的行业经验,专精于培训、咨询及评估服务,广受全球车厂及供应商赞誉,...
点击进入详情页
本回答由亚远景信息科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询