找列主元高斯消去法来求解线性代数方程组解的matlab程序
3个回答
展开全部
高斯列主元消去法
function X=Gauss_pivot(A,B)
% 用Gauss列主主元消去法解线性方程组AX=B
%X是未知向量
n=length(B);
X=zeros(n,1);
c=zeros(1,n);
d1=0
for i=1:n-1
max=abs(A(i,i));
m=i;
for j=i+1:n
if max<abs(A(j,i))
max=abs(A(j,i));
m=j;
end
end
if(m~=i)
for k=i:n
c(k)=A(i,k);
A(i,k)=A(m,k);
A(m,k)=c(k);
end
d1=B(i);
B(i)=B(m);
B(m)=d1;
end
for k=i+1:n
for j=i+1:n
A(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);
end
B(k)=B(k)-B(i)*A(k,i)/A(i,i);
A(k,i)=0;
end
end
%回代求解
X(n)=B(n)/A(n,n);
for i=n-1:-1:1
sum=0;
for j=i+1:n
sum=sum+A(i,j)*X(j);
end
X(i)=(B(i)-sum)/A(i,i);
End
function X=Gauss_pivot(A,B)
% 用Gauss列主主元消去法解线性方程组AX=B
%X是未知向量
n=length(B);
X=zeros(n,1);
c=zeros(1,n);
d1=0
for i=1:n-1
max=abs(A(i,i));
m=i;
for j=i+1:n
if max<abs(A(j,i))
max=abs(A(j,i));
m=j;
end
end
if(m~=i)
for k=i:n
c(k)=A(i,k);
A(i,k)=A(m,k);
A(m,k)=c(k);
end
d1=B(i);
B(i)=B(m);
B(m)=d1;
end
for k=i+1:n
for j=i+1:n
A(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);
end
B(k)=B(k)-B(i)*A(k,i)/A(i,i);
A(k,i)=0;
end
end
%回代求解
X(n)=B(n)/A(n,n);
for i=n-1:-1:1
sum=0;
for j=i+1:n
sum=sum+A(i,j)*X(j);
end
X(i)=(B(i)-sum)/A(i,i);
End
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
function X=Gauss_pivot(A,B)
n=length(B);
X=zeros(n,1);
c=zeros(1,n);
d1=0
for i=1:n-1
max=abs(A(i,i));
m=i;
for j=i+1:n
if max<abs(A(j,i))
max=abs(A(j,i));
m=j;
end
end
if(m~=i)
for k=i:n
c(k)=A(i,k);
A(i,k)=A(m,k);
A(m,k)=c(k);
end
d1=B(i);
B(i)=B(m);
B(m)=d1;
end
for k=i+1:n
for j=i+1:n
A(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);
end
B(k)=B(k)-B(i)*A(k,i)/A(i,i);
A(k,i)=0;
end
end
X(n)=B(n)/A(n,n);
for i=n-1:-1:1
sum=0;
for j=i+1:n
sum=sum+A(i,j)*X(j);
end
X(i)=(B(i)-sum)/A(i,i);
end
n=length(B);
X=zeros(n,1);
c=zeros(1,n);
d1=0
for i=1:n-1
max=abs(A(i,i));
m=i;
for j=i+1:n
if max<abs(A(j,i))
max=abs(A(j,i));
m=j;
end
end
if(m~=i)
for k=i:n
c(k)=A(i,k);
A(i,k)=A(m,k);
A(m,k)=c(k);
end
d1=B(i);
B(i)=B(m);
B(m)=d1;
end
for k=i+1:n
for j=i+1:n
A(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);
end
B(k)=B(k)-B(i)*A(k,i)/A(i,i);
A(k,i)=0;
end
end
X(n)=B(n)/A(n,n);
for i=n-1:-1:1
sum=0;
for j=i+1:n
sum=sum+A(i,j)*X(j);
end
X(i)=(B(i)-sum)/A(i,i);
end
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询