辛普森公式是什么,怎么推导的?
辛普森(Simpson)公式是牛顿-科特斯公式当n=2时的情形,也称为三点公式。利用区间二等分的三个点来进行积分插值。其科特斯系数分别为1/6,4/6,1/6。
例1:计算底面积为S、高为h的柱体的体积。
解:此题中S_1 = S_0 = S_2 = S,H = h,所以V = H (S_1 + 4S_0 + S_2) /6 = h (S + 4S + S) /6 = S h。
例2:计算底面积为S、高为h的锥体的体积。
解:此题中S_1 = S,S_0 = S /4,S_2 = 0,H = h,所以V = H (S_1 + 4S_0 + S_2) /6 = h (S + 4S /4 + 0) /6 = S h /3。
只需要证明根据公式算出来的体积和用积分算出来的体积相等即可。
设截面面积是截面高h的不超过3次的函数:f(h)= ah^3 + bh^2 + ch + d。
那么,利用积分计算体积,可以得到(积分限为0~h):
V = ∫ f(x) dx
= ah^4 /4 + bh^3 /3 + ch^2 /2 +dh。
利用公式计算体积,可以得到:
V = H (S_1 + 4S_0 + S_2) /6
= h ( f(0) + 4f(h/2) + f(h) ) /6
= h [ d + 4 (ah^3 /8 + bh^2 /4 + ch /2 + d) + (ah^3 + bh^2 + ch + d) ]/6
= ah^4 /4 + bh^3 /3 + ch^2 /2 +dh。
因此两式相等,公式得证。
Remark:当函数f(h)次数高于或等于4次时,公式一般不成立。这只需验证f(h)=h^4时公式不成立即可。
2023-06-12 广告