f(x)=ax2+bx+1是定义在[a一1,2a]上的偶函数,求y=f(X)的最大值是

 我来答
民以食为天fG
高粉答主

2023-04-26 · 每个回答都超有意思的
知道顶级答主
回答量:7.4万
采纳率:79%
帮助的人:8020万
展开全部
由f(x)=ax^2+bx+1
是偶函数,可得b=0,
由偶函数的定义域是【a一1,2a】,可
得2a=一(a一1),a=1/3。
所以:f(x)=x^2/3+1,x∈【一2/3,2/3】。
f(x)max=f(±2/3)=(1/3)(4/9)+1=4/27+1=31/27。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式