展开全部
二次函数的图象和性质2010-11-20 14:341、二次函数y=ax2+c的图象与性质
(1)抛物线y=ax2+c的形状由a决定,位置由c决定.
(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.
当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.
当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.
(3)抛物线y=ax2+c与y=ax2的关系.
抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.
2、二次函数y=a(x-h)2的图象与性质
①抛物线y=a(x-h)2的对称轴为x=h,顶点为(h,0).
②y=a(x-h)2的形状与y=ax2的图象的形状相同,只是位置不同,它们彼此可以通过平移而得到.
③把y=ax2的图象向左(或向右)平移|h|个单位,即得y=a(x-h)2的图象,由实践可知,当h>0时,向右平移,当h<0时,向左平移.
3、二次函数y=a(x-h)2+k的图象与性质
一般地,抛物线y=a(x-h)2+k与y=ax2的形状相同,只是位置不同.抛物线y=a(x-h)2+k有如下特点:
①a>0时,开口向上;a<0时,开口向下;
②对称轴是平行于y轴的直线x=h;
③顶点坐标是(h,k).
二次函数y=a(x-h)2+k的图象可由抛物线y=ax2向左(或向右)平移|h|个单位,再向上(或向下)平移|k|个单位而得到.
4、二次函数y=ax2+bx+c(a≠0)的图象和性质
即可化为y=a(x-h)2+k的形式,因此y=ax2+bx+c与y=a(x-h)2+k的图象具有一致性,即y=ax2+bx+c的图象是一条抛物线,它的顶点坐标为,对称轴是直线.
当a>0时,抛物线开口向上,有最低点(即顶点),当时,,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.
当a<0时,抛物线开口向下,有最高点(即顶点),当时,.在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.
由于y=ax2+bx+c可化为的形式,所以抛物线y=ax2+bx+c可由抛物线y=ax2平移得到:
第一步:若时,把y=ax2的图象向右平移个单位;若时,把y=ax2的图象向左平移个单位;
第二步:若时,再把第一次平移后的图象向上平移个单位;若时,再把第一步平移后的图象向下平移个单位.
所以抛物线y=ax2+bx+c与抛物线y=ax2的形状相同,只是位置不同.
5、二次函数y=ax2+bx+c(a≠0)的图象的画法
(1)先确定二次函数的对称轴,在对称轴的左右两侧取自变量x的值,通过列表、描点,用光滑曲线连接得到图象.
(2)通过二次函数的图象进行平移得到抛物线y=ax2+bx+c的图象.
6、抛物线y=ax2+bx+c(a≠0)与系数a、b、c的关系
a、b、c的代数式
作用
字母的符号
图象的特征
a
1.决定抛物线的开口方向;
2.决定增减性
a>0
开口向上
a<0
开口向下
c
决定抛物线与y轴交点的位置,交点坐标为(0,c)
c>0
交点在x轴上方
c=0
抛物线过原点
c<0
交点在x轴下方
决定对称轴的位置,对称轴是
ab>0
对称轴在y轴左侧
ab<0
对称轴在y轴右侧
二、重难点知识讲解
1、二次函数的三种形式:
(1)一般式:y=ax2+bx+c(a、b、c是常数,a≠0);
(2)顶点式:y=a(x-h)2+k,(h,k)为函数图象的顶点;
(3)交点式:y=a(x-x1)(x-x2),(x1,0) , (x2,0)为函数图象与x轴的交点.
2、图象的变换
二次函数的平移规律:任意抛物线y=ax2+bx+c都可转化为y=a(x-h)2+k,便可以由y=ax2适当平移得到.
y=ax2
h>0向右平移个单位
y=a(x-h)2
k>0向上平移个单位长度
y=a(x-h)2+k
h<0向左平移个单位
k<0向下平移个单位长度
3、根据已知条件正确求出二次函数的关系式
用待定系数法求函数解析式时,应当根据已知条件选择适当的二次函数的形式.如果知道函数图象与x轴的交点,那么选择交点式;如果知道函数图象的顶点,那么选择顶点式;如果知道函数图象上三个一般的点,那么选择一般式.
一次函数
I、定义与定义式: 一次函数
自变量x和因变量y有如下关系:
y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
II、一次函数的性质:
y的变化值与对应的x的变化值成正比例,比值为k
即 △y/△x=k
III、一次函数的图象及性质:
1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。
2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
3. k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
IV、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:
y1=kx1+b① 和 y2=kx2+b②。
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
V、在y=kx+b中,两个坐标系必定经过(0,b)和(-k/b,0)两点
1)反比例函数的图象是双曲线,反比例函数图象的两个分支关于原点对称.
(2)当k>0时,反比例函数图象的两个分支分别在第一、三象限内,且在每个象限内,y随x的增大而减小;当k<0时,图象的两个分支分别在第二、四象限内,且在每个象限内,y随x的增大而增大.
注意:不能说成“当k>0时,反比例函数y随x的增大而减小,当k<0时,反比例函数y随x的增大而增大.”因为,当x由负数经过0变为正数时,上述说法不成立.
(3) 反比例函数解析式的确定:反比例函数的解析式y= (k≠0)中只有一个待定系数k,因而只要有一组x、y的对应值或函数图象上一点的坐标,代入函数解析式求得k的值,就可得到反比例函数解析式.
5.反比例函数解析式的确定
在反比例函数y= (k≠0)定义中,只有一个常数,所以求反比例函数的解析式只需确定一个待定系数k,反比例函数即可确定. 所以只要将图象上一点的坐标代入y= 中即可求出k值.
(1)抛物线y=ax2+c的形状由a决定,位置由c决定.
(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.
当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.
当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.
(3)抛物线y=ax2+c与y=ax2的关系.
抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.
2、二次函数y=a(x-h)2的图象与性质
①抛物线y=a(x-h)2的对称轴为x=h,顶点为(h,0).
②y=a(x-h)2的形状与y=ax2的图象的形状相同,只是位置不同,它们彼此可以通过平移而得到.
③把y=ax2的图象向左(或向右)平移|h|个单位,即得y=a(x-h)2的图象,由实践可知,当h>0时,向右平移,当h<0时,向左平移.
3、二次函数y=a(x-h)2+k的图象与性质
一般地,抛物线y=a(x-h)2+k与y=ax2的形状相同,只是位置不同.抛物线y=a(x-h)2+k有如下特点:
①a>0时,开口向上;a<0时,开口向下;
②对称轴是平行于y轴的直线x=h;
③顶点坐标是(h,k).
二次函数y=a(x-h)2+k的图象可由抛物线y=ax2向左(或向右)平移|h|个单位,再向上(或向下)平移|k|个单位而得到.
4、二次函数y=ax2+bx+c(a≠0)的图象和性质
即可化为y=a(x-h)2+k的形式,因此y=ax2+bx+c与y=a(x-h)2+k的图象具有一致性,即y=ax2+bx+c的图象是一条抛物线,它的顶点坐标为,对称轴是直线.
当a>0时,抛物线开口向上,有最低点(即顶点),当时,,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.
当a<0时,抛物线开口向下,有最高点(即顶点),当时,.在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.
由于y=ax2+bx+c可化为的形式,所以抛物线y=ax2+bx+c可由抛物线y=ax2平移得到:
第一步:若时,把y=ax2的图象向右平移个单位;若时,把y=ax2的图象向左平移个单位;
第二步:若时,再把第一次平移后的图象向上平移个单位;若时,再把第一步平移后的图象向下平移个单位.
所以抛物线y=ax2+bx+c与抛物线y=ax2的形状相同,只是位置不同.
5、二次函数y=ax2+bx+c(a≠0)的图象的画法
(1)先确定二次函数的对称轴,在对称轴的左右两侧取自变量x的值,通过列表、描点,用光滑曲线连接得到图象.
(2)通过二次函数的图象进行平移得到抛物线y=ax2+bx+c的图象.
6、抛物线y=ax2+bx+c(a≠0)与系数a、b、c的关系
a、b、c的代数式
作用
字母的符号
图象的特征
a
1.决定抛物线的开口方向;
2.决定增减性
a>0
开口向上
a<0
开口向下
c
决定抛物线与y轴交点的位置,交点坐标为(0,c)
c>0
交点在x轴上方
c=0
抛物线过原点
c<0
交点在x轴下方
决定对称轴的位置,对称轴是
ab>0
对称轴在y轴左侧
ab<0
对称轴在y轴右侧
二、重难点知识讲解
1、二次函数的三种形式:
(1)一般式:y=ax2+bx+c(a、b、c是常数,a≠0);
(2)顶点式:y=a(x-h)2+k,(h,k)为函数图象的顶点;
(3)交点式:y=a(x-x1)(x-x2),(x1,0) , (x2,0)为函数图象与x轴的交点.
2、图象的变换
二次函数的平移规律:任意抛物线y=ax2+bx+c都可转化为y=a(x-h)2+k,便可以由y=ax2适当平移得到.
y=ax2
h>0向右平移个单位
y=a(x-h)2
k>0向上平移个单位长度
y=a(x-h)2+k
h<0向左平移个单位
k<0向下平移个单位长度
3、根据已知条件正确求出二次函数的关系式
用待定系数法求函数解析式时,应当根据已知条件选择适当的二次函数的形式.如果知道函数图象与x轴的交点,那么选择交点式;如果知道函数图象的顶点,那么选择顶点式;如果知道函数图象上三个一般的点,那么选择一般式.
一次函数
I、定义与定义式: 一次函数
自变量x和因变量y有如下关系:
y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
II、一次函数的性质:
y的变化值与对应的x的变化值成正比例,比值为k
即 △y/△x=k
III、一次函数的图象及性质:
1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。
2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
3. k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
IV、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:
y1=kx1+b① 和 y2=kx2+b②。
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
V、在y=kx+b中,两个坐标系必定经过(0,b)和(-k/b,0)两点
1)反比例函数的图象是双曲线,反比例函数图象的两个分支关于原点对称.
(2)当k>0时,反比例函数图象的两个分支分别在第一、三象限内,且在每个象限内,y随x的增大而减小;当k<0时,图象的两个分支分别在第二、四象限内,且在每个象限内,y随x的增大而增大.
注意:不能说成“当k>0时,反比例函数y随x的增大而减小,当k<0时,反比例函数y随x的增大而增大.”因为,当x由负数经过0变为正数时,上述说法不成立.
(3) 反比例函数解析式的确定:反比例函数的解析式y= (k≠0)中只有一个待定系数k,因而只要有一组x、y的对应值或函数图象上一点的坐标,代入函数解析式求得k的值,就可得到反比例函数解析式.
5.反比例函数解析式的确定
在反比例函数y= (k≠0)定义中,只有一个常数,所以求反比例函数的解析式只需确定一个待定系数k,反比例函数即可确定. 所以只要将图象上一点的坐标代入y= 中即可求出k值.
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
具体函数具体分析 总共也就几大类 理解了 就能记住
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对数函数
对数函数的一般形式为 ,它实际上就是指数函数 的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数
指数函数的一般形式为 ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。
可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点。
(8) 显然指数函数无界。
奇偶性
注图:(1)为奇函数(2)为偶函数
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。
3. 奇偶函数运算
(1) . 两个偶函数相加所得的和为偶函数.
(2) . 两个奇函数相加所得的和为奇函数.
(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
(4) . 两个偶函数相乘所得的积为偶函数.
(5) . 两个奇函数相乘所得的积为偶函数.
(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.
定义域
(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;
值域
名称定义
函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合
常用的求值域的方法
(1)化归法;(2)图象法(数形结合),
(3)函数单调性法,
(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等
关于函数值域误区
定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
“范围”与“值域”相同吗?
“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。
对数函数的一般形式为 ,它实际上就是指数函数 的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数
指数函数的一般形式为 ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。
可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点。
(8) 显然指数函数无界。
奇偶性
注图:(1)为奇函数(2)为偶函数
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。
3. 奇偶函数运算
(1) . 两个偶函数相加所得的和为偶函数.
(2) . 两个奇函数相加所得的和为奇函数.
(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
(4) . 两个偶函数相乘所得的积为偶函数.
(5) . 两个奇函数相乘所得的积为偶函数.
(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.
定义域
(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;
值域
名称定义
函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合
常用的求值域的方法
(1)化归法;(2)图象法(数形结合),
(3)函数单调性法,
(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等
关于函数值域误区
定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
“范围”与“值域”相同吗?
“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
二次函数的图象和性质2010-11-20
14:341、二次函数y=ax2+c的图象与性质
(1)抛物线y=ax2+c的形状由a决定,位置由c决定.
(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.
当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.
当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.
(3)抛物线y=ax2+c与y=ax2的关系.
抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.
2、二次函数y=a(x-h)2的图象与性质
①抛物线y=a(x-h)2的对称轴为x=h,顶点为(h,0).
②y=a(x-h)2的形状与y=ax2的图象的形状相同,只是位置不同,它们彼此可以通过平移而得到.
③把y=ax2的图象向左(或向右)平移|h|个单位,即得y=a(x-h)2的图象,由实践可知,当h>0时,向右平移,当h<0时,向左平移.
3、二次函数y=a(x-h)2+k的图象与性质
一般地,抛物线y=a(x-h)2+k与y=ax2的形状相同,只是位置不同.抛物线y=a(x-h)2+k有如下特点:
①a>0时,开口向上;a<0时,开口向下;
②对称轴是平行于y轴的直线x=h;
③顶点坐标是(h,k).
二次函数y=a(x-h)2+k的图象可由抛物线y=ax2向左(或向右)平移|h|个单位,再向上(或向下)平移|k|个单位而得到.
4、二次函数y=ax2+bx+c(a≠0)的图象和性质
即可化为y=a(x-h)2+k的形式,因此y=ax2+bx+c与y=a(x-h)2+k的图象具有一致性,即y=ax2+bx+c的图象是一条抛物线,它的顶点坐标为,对称轴是直线.
当a>0时,抛物线开口向上,有最低点(即顶点),当时,,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.
当a<0时,抛物线开口向下,有最高点(即顶点),当时,.在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.
由于y=ax2+bx+c可化为的形式,所以抛物线y=ax2+bx+c可由抛物线y=ax2平移得到:
第一步:若时,把y=ax2的图象向右平移个单位;若时,把y=ax2的图象向左平移个单位;
第二步:若时,再把第一次平移后的图象向上平移个单位;若时,再把第一步平移后的图象向下平移个单位.
所以抛物线y=ax2+bx+c与抛物线y=ax2的形状相同,只是位置不同.
5、二次函数y=ax2+bx+c(a≠0)的图象的画法
(1)先确定二次函数的对称轴,在对称轴的左右两侧取自变量x的值,通过列表、描点,用光滑曲线连接得到图象.
(2)通过二次函数的图象进行平移得到抛物线y=ax2+bx+c的图象.
6、抛物线y=ax2+bx+c(a≠0)与系数a、b、c的关系
a、b、c的代数式
作用
字母的符号
图象的特征
a
1.决定抛物线的开口方向;
2.决定增减性
a>0
开口向上
a<0
开口向下
c
决定抛物线与y轴交点的位置,交点坐标为(0,c)
c>0
交点在x轴上方
c=0
抛物线过原点
c<0
交点在x轴下方
决定对称轴的位置,对称轴是
ab>0
对称轴在y轴左侧
ab<0
对称轴在y轴右侧
二、重难点知识讲解
1、二次函数的三种形式:
(1)一般式:y=ax2+bx+c(a、b、c是常数,a≠0);
(2)顶点式:y=a(x-h)2+k,(h,k)为函数图象的顶点;
(3)交点式:y=a(x-x1)(x-x2),(x1,0)
,
(x2,0)为函数图象与x轴的交点.
2、图象的变换
二次函数的平移规律:任意抛物线y=ax2+bx+c都可转化为y=a(x-h)2+k,便可以由y=ax2适当平移得到.
y=ax2
h>0向右平移个单位
y=a(x-h)2
k>0向上平移个单位长度
y=a(x-h)2+k
h<0向左平移个单位
k<0向下平移个单位长度
3、根据已知条件正确求出二次函数的关系式
用待定系数法求函数解析式时,应当根据已知条件选择适当的二次函数的形式.如果知道函数图象与x轴的交点,那么选择交点式;如果知道函数图象的顶点,那么选择顶点式;如果知道函数图象上三个一般的点,那么选择一般式.
一次函数
I、定义与定义式:
一次函数
自变量x和因变量y有如下关系:
y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
II、一次函数的性质:
y的变化值与对应的x的变化值成正比例,比值为k
即
△y/△x=k
III、一次函数的图象及性质:
1.
作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象--一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。
2.
性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
3.
k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
IV、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:
y1=kx1+b①
和
y2=kx2+b②。
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
V、在y=kx+b中,两个坐标系必定经过(0,b)和(-k/b,0)两点
1)反比例函数的图象是双曲线,反比例函数图象的两个分支关于原点对称.
(2)当k>0时,反比例函数图象的两个分支分别在第一、三象限内,且在每个象限内,y随x的增大而减小;当k<0时,图象的两个分支分别在第二、四象限内,且在每个象限内,y随x的增大而增大.
注意:不能说成“当k>0时,反比例函数y随x的增大而减小,当k<0时,反比例函数y随x的增大而增大.”因为,当x由负数经过0变为正数时,上述说法不成立.
(3)
反比例函数解析式的确定:反比例函数的解析式y=
(k≠0)中只有一个待定系数k,因而只要有一组x、y的对应值或函数图象上一点的坐标,代入函数解析式求得k的值,就可得到反比例函数解析式.
5.反比例函数解析式的确定
在反比例函数y=
(k≠0)定义中,只有一个常数,所以求反比例函数的解析式只需确定一个待定系数k,反比例函数即可确定.
所以只要将图象上一点的坐标代入y=
中即可求出k值.
14:341、二次函数y=ax2+c的图象与性质
(1)抛物线y=ax2+c的形状由a决定,位置由c决定.
(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.
当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.
当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.
(3)抛物线y=ax2+c与y=ax2的关系.
抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.
2、二次函数y=a(x-h)2的图象与性质
①抛物线y=a(x-h)2的对称轴为x=h,顶点为(h,0).
②y=a(x-h)2的形状与y=ax2的图象的形状相同,只是位置不同,它们彼此可以通过平移而得到.
③把y=ax2的图象向左(或向右)平移|h|个单位,即得y=a(x-h)2的图象,由实践可知,当h>0时,向右平移,当h<0时,向左平移.
3、二次函数y=a(x-h)2+k的图象与性质
一般地,抛物线y=a(x-h)2+k与y=ax2的形状相同,只是位置不同.抛物线y=a(x-h)2+k有如下特点:
①a>0时,开口向上;a<0时,开口向下;
②对称轴是平行于y轴的直线x=h;
③顶点坐标是(h,k).
二次函数y=a(x-h)2+k的图象可由抛物线y=ax2向左(或向右)平移|h|个单位,再向上(或向下)平移|k|个单位而得到.
4、二次函数y=ax2+bx+c(a≠0)的图象和性质
即可化为y=a(x-h)2+k的形式,因此y=ax2+bx+c与y=a(x-h)2+k的图象具有一致性,即y=ax2+bx+c的图象是一条抛物线,它的顶点坐标为,对称轴是直线.
当a>0时,抛物线开口向上,有最低点(即顶点),当时,,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.
当a<0时,抛物线开口向下,有最高点(即顶点),当时,.在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.
由于y=ax2+bx+c可化为的形式,所以抛物线y=ax2+bx+c可由抛物线y=ax2平移得到:
第一步:若时,把y=ax2的图象向右平移个单位;若时,把y=ax2的图象向左平移个单位;
第二步:若时,再把第一次平移后的图象向上平移个单位;若时,再把第一步平移后的图象向下平移个单位.
所以抛物线y=ax2+bx+c与抛物线y=ax2的形状相同,只是位置不同.
5、二次函数y=ax2+bx+c(a≠0)的图象的画法
(1)先确定二次函数的对称轴,在对称轴的左右两侧取自变量x的值,通过列表、描点,用光滑曲线连接得到图象.
(2)通过二次函数的图象进行平移得到抛物线y=ax2+bx+c的图象.
6、抛物线y=ax2+bx+c(a≠0)与系数a、b、c的关系
a、b、c的代数式
作用
字母的符号
图象的特征
a
1.决定抛物线的开口方向;
2.决定增减性
a>0
开口向上
a<0
开口向下
c
决定抛物线与y轴交点的位置,交点坐标为(0,c)
c>0
交点在x轴上方
c=0
抛物线过原点
c<0
交点在x轴下方
决定对称轴的位置,对称轴是
ab>0
对称轴在y轴左侧
ab<0
对称轴在y轴右侧
二、重难点知识讲解
1、二次函数的三种形式:
(1)一般式:y=ax2+bx+c(a、b、c是常数,a≠0);
(2)顶点式:y=a(x-h)2+k,(h,k)为函数图象的顶点;
(3)交点式:y=a(x-x1)(x-x2),(x1,0)
,
(x2,0)为函数图象与x轴的交点.
2、图象的变换
二次函数的平移规律:任意抛物线y=ax2+bx+c都可转化为y=a(x-h)2+k,便可以由y=ax2适当平移得到.
y=ax2
h>0向右平移个单位
y=a(x-h)2
k>0向上平移个单位长度
y=a(x-h)2+k
h<0向左平移个单位
k<0向下平移个单位长度
3、根据已知条件正确求出二次函数的关系式
用待定系数法求函数解析式时,应当根据已知条件选择适当的二次函数的形式.如果知道函数图象与x轴的交点,那么选择交点式;如果知道函数图象的顶点,那么选择顶点式;如果知道函数图象上三个一般的点,那么选择一般式.
一次函数
I、定义与定义式:
一次函数
自变量x和因变量y有如下关系:
y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
II、一次函数的性质:
y的变化值与对应的x的变化值成正比例,比值为k
即
△y/△x=k
III、一次函数的图象及性质:
1.
作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象--一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。
2.
性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
3.
k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
IV、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:
y1=kx1+b①
和
y2=kx2+b②。
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
V、在y=kx+b中,两个坐标系必定经过(0,b)和(-k/b,0)两点
1)反比例函数的图象是双曲线,反比例函数图象的两个分支关于原点对称.
(2)当k>0时,反比例函数图象的两个分支分别在第一、三象限内,且在每个象限内,y随x的增大而减小;当k<0时,图象的两个分支分别在第二、四象限内,且在每个象限内,y随x的增大而增大.
注意:不能说成“当k>0时,反比例函数y随x的增大而减小,当k<0时,反比例函数y随x的增大而增大.”因为,当x由负数经过0变为正数时,上述说法不成立.
(3)
反比例函数解析式的确定:反比例函数的解析式y=
(k≠0)中只有一个待定系数k,因而只要有一组x、y的对应值或函数图象上一点的坐标,代入函数解析式求得k的值,就可得到反比例函数解析式.
5.反比例函数解析式的确定
在反比例函数y=
(k≠0)定义中,只有一个常数,所以求反比例函数的解析式只需确定一个待定系数k,反比例函数即可确定.
所以只要将图象上一点的坐标代入y=
中即可求出k值.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询