什么是数据科学
数据科学是利用科学方法、流程、算法和系统从数据中提取价值的跨学科领域。
数据科学简介如下:
数据科学Data science与数据挖掘和大数据有关,是一个通过科学的方法、过程、算法和系统从众多结构化和非结构化的数据中提取知识和见解的跨学科领域。
数据科学的概念结合了统计学、数据分析、机器学习等相关方法,以便于借助数据理解和分析实际现象。它使用了从数学、统计学、信息科学、计算机科学等许多学科领域获得的技术与理论。
图灵奖得主吉姆·格雷Jim Gray将数据科学设想为一种科学的“第四范式”(经验主义、理论研究、计算机辅助,现在是数据驱动),并且断言由于信息技术和数据洪流的影响,所有关于科学的事物都在不断地发生改变。
在2012年《哈佛商业评论》称其为“21世纪最富有魅力的工作”后,“数据科学”成了一个流行术语。它现在经常与早期概念互换使用,例如商业分析、商业智能、预测模型和统计学。
“数据科学富有魅力”的观点甚至被汉斯·罗斯林 Hans Rosling博士在2011年BBC纪录片中转述为“统计学是当今世界最具吸引力的学科”。内特·西尔弗 Nate Silver [6] 则将数据科学描述为一种对于统计学家更具吸引力的词语。
在许多场合,为了博人眼球,一些早期的解决方案现在被简单地打上了“数据科学”的旗号,而这可能冲淡这个术语的效用。虽然现在许多大学的项目都提供数据科学学位,然而它们对数据科学的定义或者合适的课程内容都没有达成一致。
数据科学是利用科学方法、流程、算法和系统从数据中提取价值的跨学科领域。
数据科学是利用科学方法、流程、算法和系统从数据中提取价值的跨学科领域。
数据科学家综合利用一系列技能(包括统计学、计算机科学和业务知识)来分析从网络、智能手机、客户、传感器和其他来源收集的数据。
数据科学揭示趋势并产生见解,企业可以利用这些见解做出更好的决策并推出更多创新产品和服务。数据是创新的基石,但是只有数据科学家从数据中收集信息,然后采取行动,才能实现数据的价值。
知识科普:数据学(Dataology)和数据科学(DataScience)是关于数据的科学,定义为研究探索Cyberspace中数据界奥秘的理论、方法和技术。
主要有两个内涵:一个是研究数据本身;另一个是为自然科学和社会科学研究提供一种新方法,称为科学研究的数据方法。
数据科学主要以统计学、机器学习、数据可视化以及(某一)领域知识为理论基础,其主要研究内容包括数据科学基础理论、数据预处理、数据计算和数据管理,数据科学的知识体系。
广告 您可能关注的内容 |