互质的概念
互质的概念是指两个或多个整数的公因数只有1的非零自然数。
互质为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。互质,若N个整数的最大公因数是1,则称这N个整数互质。
有关互质的相关知识如下:
互质,若N个整数的最大公因数是1,则称这N个整数互质。例如8,10的最大公因数是2,不是1,因此不是整数互质。7,11,13的最大公因数是1,因此这是整数互质。5和5不互质,因为5和5的公因数有1、5。
1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。因为1只有一个因数所以1既不是质数(素数),也不是合数,无法再找到1和其他数的别的公因数了。1和-1与所有整数互素,而且它们是唯一与0互素的整数。互质数的写法:如c与m互质,则写作(c,m)=1。
小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。“公约数只有1”,不能误说成“没有公约数。”
这里有一个误区,认为0不与任何数互质。严格地按照互质的定义来看0与1,-1均互质,通过任意有理数的表示方式a/b(a,b互质且b为正整数),同样可以得出0与1,-1均必须互质,否则0不是有理数。
互质数具有的定理如下:
两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数;多个数的若干个最大公因数只有1的正整数,叫做互质数;两个不同的质数,为互质数。
1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质;任何相邻的两个数互质;任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。