一道二阶导数的题目,答案有些看不懂,求解答?

问题是设f(x)在x=x0的临近有连续的2阶导数,证明:lim(h趋近0)f(x0+h)+f(x0-h)-2f(x0)/h^2=f(x0)的2阶导数答案:lim(h→0)... 问题是 设f(x)在x=x0的临近有连续的2阶导数,证明:lim(h趋近0)f(x0+h)+f(x0-h)-2f(x0)/h^2=f(x0)的2阶导数
答案:
lim(h→0)f(x0+h)+f(x0-h)-2f(x0) / h^2
=lim(h→0)f '(x0+h)-f '(x0-h) / 2h
=lim(h→0)f ''(x0+h)+f ''(x0-h) / 2
=f ''(x0)+f ''(x0) / 2(这里使用“二阶导数连续”的已知条件)
=f ''(x0)

f(x0+h)+f(x0-h)-2f(x0)的导数为什么是f '(x0+h)-f '(x0-h)?
f '(x0+h)-f '(x0-h) 的导数为什么是f ''(x0+h)+f ''(x0-h)?
不懂啊 ,求解答
展开
zssgdhr
2011-11-05 · TA获得超过5122个赞
知道大有可为答主
回答量:1100
采纳率:0%
帮助的人:567万
展开全部
因为这里的变量是h啊
对f(x0+h)+f(x0-h)-2f(x0)求导就是
f'(x0+h) (x0+h)' +f'(x0-h) (x0-h)' (f(x0)是常数,导数为0)
=f'(x0+h)-f'(x0-h)

f'(x0+h)-f'(x0-h)也是对h求导,所以是f''(x0+h)+f''(x0-h)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
SD_LY_LS
2011-11-05 · TA获得超过3101个赞
知道小有建树答主
回答量:2205
采纳率:60%
帮助的人:495万
展开全部
都是对h求导的!!!!
你仔细体会一下就明白了
所以f(x0)就是一个常数了,其导数为0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式