
大家好 我是一位初三数学方面的差生,成绩一般都不及格其实我现在都还没有一个该如何学习数学的方法
而且数学现在越来越难我就越来怕我真的很想考一个好高中只要数学提上来了我就好了,望各位数学成绩优异的朋友们来帮助一下我。了希望能有一个每天的学习计划详细点的谢谢...
而且数学现在越来越难我就越来怕 我真的很想考一个好高中只要数学提上来了我就好了,望各位数学成绩优异的朋友们来帮助一下我。了希望能有一个每天的学习计划详细点的 谢谢
展开
2个回答
展开全部
首先要培养好兴趣,有兴趣才有动力。如果没有兴趣的话也要多做题,数学没有捷径,只能考一遍遍的做题来提高自己的成绩,并且心态也很重要,不能抵触数学,再怎么不喜欢数学至少要明白学习是学给自己的,数学在生活中有多重要。这样,并且,有时间的话,去外面找一些比如学而思之类的培训学校的老师,多辅导辅导也是好的,但是前提是数学真的很差很差而且非常厌恶数学。
以上 .学好数学的最好方法就是,多做题,一天做题在做题,这样可以进步得很快哟,本人经历!!!还要锻炼思维学好数学是能力的培养:
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习。在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。保证数量就是①选准一本与教材同步的辅导书或练习册。②做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。④每天保证1小时左右的练习时间。
保证质量就是①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。②落实:不仅要落实思维过程,而且要落实解答过程。③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,就一定能把数学学好。
以上 .学好数学的最好方法就是,多做题,一天做题在做题,这样可以进步得很快哟,本人经历!!!还要锻炼思维学好数学是能力的培养:
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习。在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。保证数量就是①选准一本与教材同步的辅导书或练习册。②做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。④每天保证1小时左右的练习时间。
保证质量就是①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。②落实:不仅要落实思维过程,而且要落实解答过程。③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,就一定能把数学学好。
更多追问追答
追问
谢谢你哦 可是我希望你能给我一个比较完整的每天时间安排的学习计划 可以么?
追答
这一切都是我个人的一些想法、经验。我的思想也许比较独特。合理的可以自己试试,偏激的干脆掠过不读。我会从以下几个方面进行阐述。
1、 学习未动,兴趣先行
2、 务学与求道
3、 自信是成功的第一秘诀
4、 态度决定一切
5、 不强调进步
6、 练就过硬的本领是学习的根本目的
7、 会玩、会偷懒、然后会学
8、 考试、分析考试结果、做出下一步计划、调整自己
9、 学习别人
一、 学习未动,兴趣先行
孔子曰:“知之者不如好之者,好之者不如乐之者。”这句话是非常有道理的,它深刻地阐释了学习兴趣对于学习的作用。
之所以把兴趣放在首位,也是因为兴趣是十分重要的。兴趣能够调度人的更多的精力在某一方面。如果你把兴趣调 扎实的基础可以使成绩稳定,扎实的基础可以使每一次考试无所惧怕而坦然面对,扎实的基础保证做题的速度与质量兼得,扎实的基础可以使……它的好处很多很多。做到就更非易事。
据我理解做题时最好的方法,但不同的人做题会有不同的效果。做题少的人不一定学习差,做题多的人也不一定就成绩好。
做题有助于过硬,所以做题十分有必要。老师留的题不可不作,但自己也要根据自己的情况补充一些练习。
选题上是有学问的。做什么样的题要根据自己要达到什么样的目的来决定。要是自己做题更加熟练,就需要找一些并不是很新颖的一般题来做,这种题不厌多做,几十道题如果涵盖面广的话,可以多做上几遍。初二的时候,我的整式计算很差,几十道题全是枯燥的计算,我不停地做了好几遍,一上午就使自己的纯计算能力有了很大的长进。如果要多见见各种类型的题目就一定要找新颖的题。如果要锻炼自己的解体能力,就要找大题由简入深做下去。
听课的方法,学生除在预习中明确任务,做到有针对性地解决符合自己实际的问题外,还要集中注意力,把自己的思维活动紧紧跟上教师的讲课,开动脑筋,思考教师怎样提出问题,分析问题,解决问题,特别要从中学习数学思维的方法,如观察,比较,分析,综合,归纳,演绎,一般化,
通常, 述出来,并力求简单,明白,完整。
最后,还要对解题进行回顾,检查解答是否正确无误,每步推理或运算是否立论有据,答案是否详尽无遗;思考一下解题方法可否改进或有否新的解法,该题结果能否推广等,并小结一下解题的经验,进而发展与完善解题的思想方法,总结出带有规律性的东西来。
希望能够帮到你 !!!!!!!!!!!!!!!!!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询