大一数学求导 。
1.f(x)=(1-cosx)/x,x不等于0f(x)=0x=0,求f'(0)2.设y=ln|f(x)|,其中f(x)可导,求y'要有过程啊,谢了、...
1. f(x)=(1-cosx)/x , x不等于0 f(x)=0 x=0 ,求f'(0)
2. 设y=ln|f(x)| ,其中f(x)可导,求y'
要有过程啊,谢了、 展开
2. 设y=ln|f(x)| ,其中f(x)可导,求y'
要有过程啊,谢了、 展开
1个回答
展开全部
1.首先 f(x)在x=0是连续的 可通过求f(x)=(1-cosx)/x的极限可知 x->0时 利用罗比达法则可知f(x)=sinx=0 即x--> lim f(x)=0 ,再利用导数定义求f'(0),当Δx->0时 f'(0)= (f(0+Δx)-f(0))/Δx 即求上式的极限 再利用罗比达法则 可知f'(0)= (f(0+Δx)-f(0))/Δx=lim f(x)/x=lim (1-cosx)/x^2 =sinx/(2x)=1/2;
2 当f(x)>0
y=lnf(x)对其求导得 y'=f'(x)/f(x)
当f(x)<0
y=ln[-f(x)}对其求导得 y'=-f'(x)/f(x)
2 当f(x)>0
y=lnf(x)对其求导得 y'=f'(x)/f(x)
当f(x)<0
y=ln[-f(x)}对其求导得 y'=-f'(x)/f(x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询