如图,四边形ABCD的对角线AC与BD相交于点E,便AB、CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线
如图,四边形ABCD的对角线AC与BD相交于点E,便AB、CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交于点P、Q,若MF乘CD...
如图,四边形ABCD的对角线AC与BD相交于点E,便AB、CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交于点P、Q,若MF乘CD=NF乘AB,且DQ乘BP=AQ乘CP。求证:PQ垂直于BC。
展开
2个回答
展开全部
连接AF、BF、DF、CF,∵点M、N分别为边AB、CD的中点,MF⊥AB,NF⊥CD,∴△AFB和△CFD为等腰△,AF=BF,DF=CF,∵MF·CD=NF·AB,MF/NF=AB/CD=AM/DN,∠AMF=∠DNF=90°,∴△AMF∽△DNF,同理可证:△BMF∽△CNF,则△AFB∽△CFD,∴∠AFB=∠CFD,∵∠BFD=∠AFB+∠AFD,∠AFC=∠CFD+∠AFD,∴∠BFD=∠AFC,∵AF=BF,DF=CF,∴△BFD≌△AFC,∴AC=BD,∠FAC=∠FBD,∠AEB=∠AFB,则A、E、F、B四点共圆,∠BAF=∠BEF,同理可证D、E、F、C四点共圆,∠CDF=∠CEF,∵∠BAF=∠CDF,∴∠BEF=∠CEF,则PQ为∠BEC的角平分线,AE/ED=AQ/QD,BP/CP=BE/EC,∵DQ·BP=AQ·CP,AQ/QD=BP/CP,∴AE/ED=BE/EC,∵∠AED和∠BEC为对顶角,∴△AED∽△BEC,∠DAC=∠DBC,∠ADB=∠ACB,则A、B、C、D四点共圆,∵AC=BD,∴∠BAD=∠ADC,∵∠ABD=∠DCA,∴△ABD≌△DCA,∴AB=CD,∠ACB=∠DBC,△BEC为等腰△,∴PQ⊥BC。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询