关于数学中偏导和隐函数求导的问题。
现在学到了多元函数微分法,在做题时,实在搞不懂什么时候求偏导什么时候是隐函数求导,请老师帮我分类介绍下,谢谢!...
现在学到了多元函数微分法,在做题时,实在搞不懂什么时候求偏导什么时候是隐函数求导,请老师帮我分类介绍下,谢谢!
展开
2个回答
展开全部
隐函数是用式子F(x,y)=0来表示的,其实质仍然是每个x对应唯一的一个y值,
在对隐函数求导的时候,就是用原来的式子对x求导数,而把y视为一个中间变量,再求导一次后得到y'
如y²对x求导就得到2yy'
例如对于隐函数x²+y²=0,
x²对x求导得到2x,y²对x求导得到2yy'
所以其导函数即为:2x+2yy'=0
(即最后的结果仍然可以是隐函数的形式,可以不把y用x来表示)
而多元函数是用式子z=f(x,y)来表示的,即一组数(x,y)通过一定的计算来对应一个数z
(当然也可以由更多的数来表示,如z=f(x1,x2,x3……xn) )
二元函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数
同样,z在(x0,y0)处对y的偏导数,就是把x固定在x0看成常数后,一元函数z=f(x0,y)在y0处的导数
例如对于隐函数z=x²+y²,
z对x求偏导的时候就把y视为常数,
而x²对x求导得到2x,即∂z/∂x=2x
同理,z对y求偏导的时候就把x视为常数,
而y²对y求导得到2y,即∂z/∂y=2y
多元函数和隐函数最大的区别就是二者的解析式,
多元函数为z=f(x,y),而隐函数为F(x,y)=0,这是解题的关键
在对隐函数求导的时候,就是用原来的式子对x求导数,而把y视为一个中间变量,再求导一次后得到y'
如y²对x求导就得到2yy'
例如对于隐函数x²+y²=0,
x²对x求导得到2x,y²对x求导得到2yy'
所以其导函数即为:2x+2yy'=0
(即最后的结果仍然可以是隐函数的形式,可以不把y用x来表示)
而多元函数是用式子z=f(x,y)来表示的,即一组数(x,y)通过一定的计算来对应一个数z
(当然也可以由更多的数来表示,如z=f(x1,x2,x3……xn) )
二元函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数
同样,z在(x0,y0)处对y的偏导数,就是把x固定在x0看成常数后,一元函数z=f(x0,y)在y0处的导数
例如对于隐函数z=x²+y²,
z对x求偏导的时候就把y视为常数,
而x²对x求导得到2x,即∂z/∂x=2x
同理,z对y求偏导的时候就把x视为常数,
而y²对y求导得到2y,即∂z/∂y=2y
多元函数和隐函数最大的区别就是二者的解析式,
多元函数为z=f(x,y),而隐函数为F(x,y)=0,这是解题的关键
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询