已知定义域为R的函数f(x)=(-2^x+b)/(2^(x-1)+a)是奇函数
1。求ab的值2.若对于任意的t属于R,不等式f(t^2-2t)+f(2t^2-k)<0恒成立,求k的取值范围...
1。 求a b 的值
2. 若对于任意的t属于R,不等式f(t^2-2t)+f(2t^2-k)<0恒成立,求k的取值范围 展开
2. 若对于任意的t属于R,不等式f(t^2-2t)+f(2t^2-k)<0恒成立,求k的取值范围 展开
展开全部
(1)对R上的奇函数来说,f(0)=0,即-1+b=0,b=1.
F(x)=(-2^x+1)/(2^(x+1)+a)
又有F(-x)=- F(x)
(-2^(-x)+1)/(2^(-x+1)+a)= -(-2^x+1)/(2^(x+1)+a)……左边式子的分子分母同乘以2^x
(-1+2^x)/(2+a•2^x)= (2^x-1)/(2^(x+1)+a)
所以2+a•2^x=2^(x+1)+a
a(2^x-1)= 2^(x+1)-2, a=2.
(2)F(x)=(-2^x+b)/(2^(x+1)+a)
(1)对R上的奇函数来说,f(0)=0,即-1+b=0,b=1.
F(x)=(-2^x+1)/(2^(x+1)+a)
又有F(-x)=- F(x)
(-2^(-x)+1)/(2^(-x+1)+a)= -(-2^x+1)/(2^(x+1)+a)……左边式子的分子分母同乘以2^x
(-1+2^x)/(2+a•2^x)= (2^x-1)/(2^(x+1)+a)
所以2+a•2^x=2^(x+1)+a
a(2^x-1)= 2^(x+1)-2, a=2.
(2)f(t²-2t)+f(2 t²-k)<0
f(t²-2t) < -f(2 t²-k)……利用奇函数定义
f(t²-2t) < f(k-2 t²)……利用单调递减
所以t²-2t> k-2 t²
K<3t²-2t
3t²-2t=3(t-1/3) ²-1/3≥-1/3
所以恒成立时,只需k小于函数3t²-2t的最小值即可。
∴K<-1/3.
http://zhidao.baidu.com/question/57212865.html
F(x)=(-2^x+1)/(2^(x+1)+a)
又有F(-x)=- F(x)
(-2^(-x)+1)/(2^(-x+1)+a)= -(-2^x+1)/(2^(x+1)+a)……左边式子的分子分母同乘以2^x
(-1+2^x)/(2+a•2^x)= (2^x-1)/(2^(x+1)+a)
所以2+a•2^x=2^(x+1)+a
a(2^x-1)= 2^(x+1)-2, a=2.
(2)F(x)=(-2^x+b)/(2^(x+1)+a)
(1)对R上的奇函数来说,f(0)=0,即-1+b=0,b=1.
F(x)=(-2^x+1)/(2^(x+1)+a)
又有F(-x)=- F(x)
(-2^(-x)+1)/(2^(-x+1)+a)= -(-2^x+1)/(2^(x+1)+a)……左边式子的分子分母同乘以2^x
(-1+2^x)/(2+a•2^x)= (2^x-1)/(2^(x+1)+a)
所以2+a•2^x=2^(x+1)+a
a(2^x-1)= 2^(x+1)-2, a=2.
(2)f(t²-2t)+f(2 t²-k)<0
f(t²-2t) < -f(2 t²-k)……利用奇函数定义
f(t²-2t) < f(k-2 t²)……利用单调递减
所以t²-2t> k-2 t²
K<3t²-2t
3t²-2t=3(t-1/3) ²-1/3≥-1/3
所以恒成立时,只需k小于函数3t²-2t的最小值即可。
∴K<-1/3.
http://zhidao.baidu.com/question/57212865.html
追问
拜托题目不一样的……
追答
(1)对R上的奇函数来说,f(0)=0,即-1+b=0,b=1.
F(x)=(-2^x+1)/(2^(x-1)+a)
又有F(-x)=- F(x)
(-2^(-x)+1)/(2^(-x-1)+a)= -(-2^x+1)/(2^(x-1)+a)……左边式子的分子分母同乘以2^x
(-1+2^x)/(1/2+a•2^x)= (2^x-1)/(2^(x-1)+a)
所以1/2+a•2^x=2^(x-1)+a
a(2^x-1)= 2^(x-1)-1/2,
a=1/2.
(2)F(x)=(-2^x+b)/(2^(x-1)+a)
f(t²-2t)+f(2 t²-k) k-2 t²
K<3t²-2t
3t²-2t=3(t-1/3) ²-1/3≥-1/3
所以恒成立时,只需k小于函数3t²-2t的最小值即可。
∴K<-1/3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询