已知 1/a+1/b+1/c=1/(a+b+c)《abc不等于0,a+b+c不等于0》求证 a、b 、c 三数中必有两个互为相反数。

 我来答
wwh123456789
2007-08-23 · 超过11用户采纳过TA的回答
知道答主
回答量:65
采纳率:0%
帮助的人:24.6万
展开全部
由已知有(ab+bc+ac)/abc=1/a+b+c,去分母(ab+bc+ac)(a+b+c)=abc,而左边可化为[a(b+c)+bc][a+(b+c)]=a^2(b+c)+abc+a(b+c)^2+bc(b+c)所以
a^2(b+c)+a(b+c)^2+bc(b+c)=0,即(b+c)[a^2+a(b+c)+bc]=(b+c)(a+c)(a+b)=0,所以(b+c)=0或(a+c)=0或(a+b)=0即a、b、c三数中必有两个互为相反数。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式