抛物线的切线方程怎么求??
2个回答
2023-08-10
展开全部
抛物线上某一点的切线方程如下个人见解仅供参考:
抛物线上某一点的切线方程可以通过求解该点的导数得到。假设抛物线的方程为y = ax^2 + bx + c,其中a、b、c为常数。设抛物线上某一点的横坐标为x0,则该点的纵坐标为y0 = ax0^2 + bx0 + c。求解该点的导数为抛物线的斜率,即y' = 2ax0 + b。
所以,抛物线上某一点的切线方程为y = (2ax0 + b)x + (y0 - (2ax0 + b)x0)。
抛物线上某一点的切线方程可以通过求解该点的导数得到。假设抛物线的方程为y = ax^2 + bx + c,其中a、b、c为常数。设抛物线上某一点的横坐标为x0,则该点的纵坐标为y0 = ax0^2 + bx0 + c。求解该点的导数为抛物线的斜率,即y' = 2ax0 + b。
所以,抛物线上某一点的切线方程为y = (2ax0 + b)x + (y0 - (2ax0 + b)x0)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询