如图1,O为正方形ABCD的中心,分别延长OA到点F,OD到点E,使OF=2OA,OE=2OD,连接EF,将三角形FOE

国梦圆而复圆8082
2011-11-09 · TA获得超过5.4万个赞
知道小有建树答主
回答量:2.6万
采纳率:0%
帮助的人:3310万
展开全部
(1)AE'=BF'.
证明:OA=OD;OE=2OD;OF=2OA.则OE=OF=OE'=OF';
∠E'OF'=∠EOF=90°,则:∠1=∠3;
又OB=OA,故⊿AOE'≌ΔBOF'(SAS),AE'=BF'.
(2)当a=30度时,∠AOE'=∠AOE-∠E'OE=∠AOD-a=60°;
连接E'F.由于OE'=OF(已证),则⊿E'OF为等边三角形,E'F=E'O;
又OF=2OA,即OA=AF,故E'A⊥OF.(等腰三角形底边的中线也是底边的高)
所以,三角形AOE'为直角三角形.
不当天使很久
2011-11-09
知道答主
回答量:2
采纳率:0%
帮助的人:3314
展开全部
(1)AE'=BF'.
证明:OA=OD;OE=2OD;OF=2OA.则OE=OF=OE'=OF';
∠E'OF'=∠EOF=90°,则:∠1=∠3;
又OB=OA,故⊿AOE'≌ΔBOF'(SAS),AE'=BF'.
(2)当a=30度时,∠AOE'=∠AOE-∠E'OE=∠AOD-a=60°;
连接E'F.由于OE'=OF(已证),则⊿E'OF为等边三角形,E'F=E'O;
又OF=2OA,即OA=AF,故E'A⊥OF.(等腰三角形底边的中线也是底边的高)
所以,三角形AOE'为直角三角形.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
美妙英姿458
2011-11-20 · TA获得超过5.5万个赞
知道大有可为答主
回答量:3.1万
采纳率:0%
帮助的人:3841万
展开全部
延长OA到G,使OA=OG,连接GE',可证明三角形是等边三角形,则AE'是三角形GAE'的中线,则可知AE'垂直于GO,即三角形E'AO为直角三角形。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
措過136
2012-05-13 · TA获得超过272个赞
知道答主
回答量:31
采纳率:0%
帮助的人:15万
展开全部

这是2011南通的中考数学题

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式