已知sinα=1/3,α∈(π/2,π),cosβ=-3/5,β∈(π,3π/2),求sin(α+β)、cos(α-β)的值
展开全部
解:∵α∈(π/2,π),β∈(π,3π/2)
∴cosα<0,sinβ<0
∵sinα=1/3,cosβ=-3/5
∴cosα=-√(1-sin²α)=-2√2/3
sinβ=-√(1-cos²β)=-4/5
故sin(α+β)=sinαcosβ+cosαsinβ
=(1/3)(-3/5)+(-2√2/3)(-4/5)
=(8√2-3)/15
cos(α-β)=cosαcosβ+sinαsinβ
=(-2√2/3)(-3/5)+(1/3)(-4/5)
=(6√2-4)/15
∴cosα<0,sinβ<0
∵sinα=1/3,cosβ=-3/5
∴cosα=-√(1-sin²α)=-2√2/3
sinβ=-√(1-cos²β)=-4/5
故sin(α+β)=sinαcosβ+cosαsinβ
=(1/3)(-3/5)+(-2√2/3)(-4/5)
=(8√2-3)/15
cos(α-β)=cosαcosβ+sinαsinβ
=(-2√2/3)(-3/5)+(1/3)(-4/5)
=(6√2-4)/15
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询