求解两道高数极限题。
展开全部
1. u(n) = (1/2) (3/4) ...... (2n-1) / (2n)
v(n) = (2/3) (4/5) ...... (2n)/(2n+1)
u(n) < v(n)
=> u(n) * u(n) < u(n) * v(n) = 1/(2n+1)
0 < u(n) < 1/√(2n+1)
由迫敛准则, lim(n->∞) u(n) = 0
2. 1 < u(n) < n^(1/n), lim(n->∞) n^(1/n) = 1
由迫敛准则, lim(n->∞) u(n) = 1
v(n) = (2/3) (4/5) ...... (2n)/(2n+1)
u(n) < v(n)
=> u(n) * u(n) < u(n) * v(n) = 1/(2n+1)
0 < u(n) < 1/√(2n+1)
由迫敛准则, lim(n->∞) u(n) = 0
2. 1 < u(n) < n^(1/n), lim(n->∞) n^(1/n) = 1
由迫敛准则, lim(n->∞) u(n) = 1
展开全部
第一题每项都小于1.你可以从0.99^100次方得到启发,对于任意小数e。你总可以找到某个对应的n使得那些项相乘小于e。所以为0;
第二题,你可以从 n根号n>原式>=1.
从n根号n的极限为1.所以原式极限为1
第二题,你可以从 n根号n>原式>=1.
从n根号n的极限为1.所以原式极限为1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一题,原式=(2n-1)!! / (2n)!! ,分母始终大于分子,而且越往后,大的越厉害,所以极限为0
第二题,夹逼定理,极限等于1
第二题,夹逼定理,极限等于1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询