函数f(x)在[0,+∞) 上有二阶导数,且f(0)=0,f''(x)>0,证明f(x)/x在(0,+∞) 上单调递增

jinling4388
2011-11-07 · TA获得超过7175个赞
知道大有可为答主
回答量:2642
采纳率:93%
帮助的人:995万
展开全部
设F(x)=f(x)/x,则
F'(x)=[xf'(x)-f(x)]/x²

设G(x)=xf'(x)-f(x),则
G(0)=0-f(0)=0
G‘(x)=f'(x)+xf''(x)-f'(x)=xf''(x)
当x>0时,G'(x)>0恒成立。∴G(x)在[0,+∞)单调增
又∵G(0)=0 ∴G(x)>0在(0,+∞)恒成立,即F'(x)>0在(0,+∞)恒成立
∴f(x)/x在(0,+∞) 上单调递增
729707767
2011-11-07 · TA获得超过1.5万个赞
知道大有可为答主
回答量:4894
采纳率:50%
帮助的人:2032万
展开全部
由 Lagrange中值公式:
对于 x > 0, 有: f(x) - f(0) = f ' (ξ) x , 0 < ξ < x
f(0)=0,f''(x)>0, f '(x) 严格单增, f '(x) > f ' (ξ)
设F(x) = f(x) / x,则
F'(x) = [ x f '(x) - f(x)] / x² = [ f '(x) - f ' (ξ) ] / x > 0
即证 f(x)/x在(0,+∞) 上单调递增。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ghighg
2011-11-07 · TA获得超过2097个赞
知道小有建树答主
回答量:656
采纳率:77%
帮助的人:661万
展开全部
令g(x)=f(x)/x
则g'(x)=[xf'(x)-f(x)]/x^2
令h(x)=xf'(x)-f(x)
则h(0)=0*f‘(x)-f(0)=0
在(0,+∞),h'(x)=f'(x)+xf''(x)-f'(x)=xf''(x)>0
h(x)为增函数,则h(x)>h(0)=0
x^2>0
所以在(0,+∞)
g’(x)=h(x)/x^2>0
所以g(x)在(0,+∞)上单调递增。
即f(x)/x在(0,+∞)上单调递增。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式