y=(arcsinx)^2 y=arccot(1-x^2) y=arcsin(x+1/x-1) 求导。要详细的过程。谢谢
2个回答
展开全部
y=(arcsinx)^2 (arcsinx)′=1/√(1-x²) y′=2(arcsinx)*1/√(1-x²)
y=arccot(1-x^2) (arccotx)′=-1/(1+x²) y′=-1/[1+(1-x^2)²]*(-2x)=2x/[1+(1-x^2)²]
y=arcsin(x+1/x-1) (arcsinx)′=1/√(1-x²) y′=1/√[1-(x+1/x-1) ²]*(1-1/x²)
y=arccot(1-x^2) (arccotx)′=-1/(1+x²) y′=-1/[1+(1-x^2)²]*(-2x)=2x/[1+(1-x^2)²]
y=arcsin(x+1/x-1) (arcsinx)′=1/√(1-x²) y′=1/√[1-(x+1/x-1) ²]*(1-1/x²)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询