口袋中有n个黑球、1个白球,每次从口袋中随机地摸出一球,并换入一只黑球.求第k 次取到黑球的概率
4个回答
展开全部
关键是看前k-1次取不取的到白球换成黑球
虽然n个球都是黑色,但其实算总的取球情况数量的时候是不一样的
比如两个黑球,只能取一个球
虽然取的两次都是黑球,但是还是算两次不同的取球
若前k-1次取不到白球,即全取了黑球
概率为[n/(n+1)]^(k-1)
所以取到白球的概率为1-[n/(n+1)]^(k-1)
取到白球后袋子里就只有黑球了,因此必取到黑球
概率为{1-[n/(n+1)]^(k-1)}*100%=1-[n/(n+1)]^(k-1)
没取到白球则取到黑球的概率为n/(n+1)
乘上前k-1次没取到白球的概率
得到概率为[n/(n+1)]^k
因此第k次取到黑球的概率为{[n/(n+1)]^k+1-[n/(n+1)]^(k-1)}
虽然n个球都是黑色,但其实算总的取球情况数量的时候是不一样的
比如两个黑球,只能取一个球
虽然取的两次都是黑球,但是还是算两次不同的取球
若前k-1次取不到白球,即全取了黑球
概率为[n/(n+1)]^(k-1)
所以取到白球的概率为1-[n/(n+1)]^(k-1)
取到白球后袋子里就只有黑球了,因此必取到黑球
概率为{1-[n/(n+1)]^(k-1)}*100%=1-[n/(n+1)]^(k-1)
没取到白球则取到黑球的概率为n/(n+1)
乘上前k-1次没取到白球的概率
得到概率为[n/(n+1)]^k
因此第k次取到黑球的概率为{[n/(n+1)]^k+1-[n/(n+1)]^(k-1)}
2011-11-12
展开全部
第k次取到黑球的对立事件是第k次取到白球
因为第k次取到白球的概率为
(n/(n+1))^(k-1)*1/(n+1)=n^(k-1)/(n+1)^k
所以第k次取到黑球的概率为
1-n^(k-1)/(n+1)^k
因为第k次取到白球的概率为
(n/(n+1))^(k-1)*1/(n+1)=n^(k-1)/(n+1)^k
所以第k次取到黑球的概率为
1-n^(k-1)/(n+1)^k
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询