急,求解两道洛必达法则求极限题!!!!!!!
1.lim(sinx/x)^(6/x^2)其中x趋向于02.limx*[(1+1/x)^x-e]其中x趋向于无穷需要详解过程...
1.lim(sinx/x)^(6/x^2)其中x趋向于0
2.limx*[(1+1/x)^x-e]其中x趋向于无穷
需要详解过程 展开
2.limx*[(1+1/x)^x-e]其中x趋向于无穷
需要详解过程 展开
3个回答
展开全部
对于指数形式的极限可以取对数变成乘积形式,当然乘积形式很容易转化为除法形式,然后就可以应用洛必达法则求极限
lim(sinx/x)^(6/x^2),其对数为lim(6/x^2)ln(sinx/x)=lim 6(ln(sinx/x)/x^2
上下分别求导,lim 6(ln(sinx/x)/x^2=lim [6(x/sinx)*(xcosx-sinx)/x^2]/(2x)=lim [3(1)*(xcosx-sinx)/x^2]/x =lim 3(xcosx-sinx)/x^3=lim 3(cosx-xsinx-cosx)/(3x^2)=lim -sinx/x=-1
所以原来的极限lim(sinx/x)^(6/x^2)=1/e
lim(sinx/x)^(6/x^2),其对数为lim(6/x^2)ln(sinx/x)=lim 6(ln(sinx/x)/x^2
上下分别求导,lim 6(ln(sinx/x)/x^2=lim [6(x/sinx)*(xcosx-sinx)/x^2]/(2x)=lim [3(1)*(xcosx-sinx)/x^2]/x =lim 3(xcosx-sinx)/x^3=lim 3(cosx-xsinx-cosx)/(3x^2)=lim -sinx/x=-1
所以原来的极限lim(sinx/x)^(6/x^2)=1/e
展开全部
用洛必达法则把e的指数化成3(xcosx-sinx)/x²sinx以后把分子写成x(cosx-1)+(x-sinx),分母等价于x³。
cosx-1=-2sin²(x/2)~-1/2x²。
(x-sinx)/x³极限会求吧,2者相加就行了。
cosx-1=-2sin²(x/2)~-1/2x²。
(x-sinx)/x³极限会求吧,2者相加就行了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一个为e^(-1),第二个为无穷大
追问
需要详解过程
追答
抱歉,过程不太清楚,但用matlab很好求,所有极限问题都可以解决
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询