怎么用c语言实现单源最短路径问题?要求是用Dijkstra算法,最好写出所有的代码 ,包括结构定义等等,对一
2个回答
展开全部
C语言代码://清华大学出版社光盘的代码
void ShortestPath_DIJ(MGraph G,int v0,PathMatrix &P,ShortPathTable &D)
{ // 算法7.15
// 用Dijkstra算法求有向网G的v0顶点到其余顶点v的最短路径P[v]
// 及其带权长度D[v]。
// 若P[v][w]为TRUE,则w是从v0到v当前求得最短路径上的顶点。
// final[v]为TRUE当且仅当v∈S,即已经求得从v0到v的最短路径。
int i=0,j, v,w,min;
bool final[MAX_VERTEX_NUM];
for (v=0; v<G.vexnum; ++v) {
final[v] = FALSE;
D[v] = G.arcs[v0][v].adj;
for (w=0; w<G.vexnum; ++w) P[v][w] = FALSE; // 设空路径
if (D[v] < INFINITY) { P[v][v0] = TRUE; P[v][v] = TRUE; }
}
D[v0] = 0; final[v0] = TRUE; // 初始化,v0顶点属于S集
//--- 开始主循环,每次求得v0到某个v顶点的最短路径,并加v到S集 ---
for (i=1; i<G.vexnum; ++i) { // 其余G.vexnum-1个顶点
min = INFINITY; // 当前所知离v0顶点的最近距离
for (w=0; w<G.vexnum; ++w)
if (!final[w]) // w顶点在V-S中
if (D[w]<min) { v = w; min = D[w]; } // w顶点离v0顶点更近
final[v] = TRUE; // 离v0顶点最近的v加入S集
for (w=0; w<G.vexnum; ++w) // 更新当前最短路径及距离
if (!final[w] && (min+G.arcs[v][w].adj<D[w])) {
// 修改D[w]和P[w], w∈V-S
D[w] = min + G.arcs[v][w].adj;
for(j=0;j<G.vexnum;j++) P[w][j] = P[v][j]; //第v行赋值于第w行
P[w][w] = TRUE; // P[w] = P[v]+[w]
}//if
}//for
} // ShortestPath_DIJ
void ShortestPath_DIJ(MGraph G,int v0,PathMatrix &P,ShortPathTable &D)
{ // 算法7.15
// 用Dijkstra算法求有向网G的v0顶点到其余顶点v的最短路径P[v]
// 及其带权长度D[v]。
// 若P[v][w]为TRUE,则w是从v0到v当前求得最短路径上的顶点。
// final[v]为TRUE当且仅当v∈S,即已经求得从v0到v的最短路径。
int i=0,j, v,w,min;
bool final[MAX_VERTEX_NUM];
for (v=0; v<G.vexnum; ++v) {
final[v] = FALSE;
D[v] = G.arcs[v0][v].adj;
for (w=0; w<G.vexnum; ++w) P[v][w] = FALSE; // 设空路径
if (D[v] < INFINITY) { P[v][v0] = TRUE; P[v][v] = TRUE; }
}
D[v0] = 0; final[v0] = TRUE; // 初始化,v0顶点属于S集
//--- 开始主循环,每次求得v0到某个v顶点的最短路径,并加v到S集 ---
for (i=1; i<G.vexnum; ++i) { // 其余G.vexnum-1个顶点
min = INFINITY; // 当前所知离v0顶点的最近距离
for (w=0; w<G.vexnum; ++w)
if (!final[w]) // w顶点在V-S中
if (D[w]<min) { v = w; min = D[w]; } // w顶点离v0顶点更近
final[v] = TRUE; // 离v0顶点最近的v加入S集
for (w=0; w<G.vexnum; ++w) // 更新当前最短路径及距离
if (!final[w] && (min+G.arcs[v][w].adj<D[w])) {
// 修改D[w]和P[w], w∈V-S
D[w] = min + G.arcs[v][w].adj;
for(j=0;j<G.vexnum;j++) P[w][j] = P[v][j]; //第v行赋值于第w行
P[w][w] = TRUE; // P[w] = P[v]+[w]
}//if
}//for
} // ShortestPath_DIJ
2011-11-08
展开全部
1、最短路径(单源dijkstra邻接阵形式)
//单源最短路径,dijkstra算法,邻接阵形式,复杂度O(n^2)
//求出源s到所有点的最短路经,传入图的顶点数n,(有向)邻接矩阵mat
//返回到各点最短距离min[]和路径pre[],pre[i]记录s到i路径上i的父结点,pre[s]=-1
//可更改路权类型,但必须非负!
#define MAXN 200
#define inf 1000000000
typedef int elem_t;
void dijkstra(int n,elem_t mat[][MAXN],int s,elem_t* min,int* pre){
int v[MAXN],i,j,k;
for (i=0;i<n;i++)
min[i]=inf,v[i]=0,pre[i]=-1;
for (min[s]=0,j=0;j<n;j++){
for (k=-1,i=0;i<n;i++)
if (!v[i]&&(k==-1||min[i]<min[k]))
k=i;
for (v[k]=1,i=0;i<n;i++)
if (!v[i]&&min[k]+mat[k][i]<min[i])
min[i]=min[k]+mat[pre[i]=k][i];
}
}
//单源最短路径,dijkstra算法,邻接阵形式,复杂度O(n^2)
//求出源s到所有点的最短路经,传入图的顶点数n,(有向)邻接矩阵mat
//返回到各点最短距离min[]和路径pre[],pre[i]记录s到i路径上i的父结点,pre[s]=-1
//可更改路权类型,但必须非负!
#define MAXN 200
#define inf 1000000000
typedef int elem_t;
void dijkstra(int n,elem_t mat[][MAXN],int s,elem_t* min,int* pre){
int v[MAXN],i,j,k;
for (i=0;i<n;i++)
min[i]=inf,v[i]=0,pre[i]=-1;
for (min[s]=0,j=0;j<n;j++){
for (k=-1,i=0;i<n;i++)
if (!v[i]&&(k==-1||min[i]<min[k]))
k=i;
for (v[k]=1,i=0;i<n;i++)
if (!v[i]&&min[k]+mat[k][i]<min[i])
min[i]=min[k]+mat[pre[i]=k][i];
}
}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询