t小于0,求y=(t^2-4t+1)/t的最大值
2个回答
展开全部
将函数y=(x^4 x^2 5)/(x^2 1)^2化解为 y=5(1/(x^2 1)-1/10)^2 19/20
令a=1/(x^2 1),则a的取值区间为(0,1]
故当a=1/10,即x=3或-3时,y最小,为19/20,
当a=1时,即x=0时,y最大,为5.
故,最大值:5
最小值:19/20
设t=1/(x^2 1),则x^2≥0,对于一个分数,在分子不变的情况下分母越大,那么该分数的值越小所以当x=0时,t最大,且x越大分数越小而趋于0而不等于0,故0
令a=1/(x^2 1),则a的取值区间为(0,1]
故当a=1/10,即x=3或-3时,y最小,为19/20,
当a=1时,即x=0时,y最大,为5.
故,最大值:5
最小值:19/20
设t=1/(x^2 1),则x^2≥0,对于一个分数,在分子不变的情况下分母越大,那么该分数的值越小所以当x=0时,t最大,且x越大分数越小而趋于0而不等于0,故0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询