
回归参数的显著性检验(t检验)和回归方程的显著性检验(F检验)的区别是什么?
展开全部
t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性。各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系。
两者结果间的差异有5次以上是由抽样误差造成的,则“无效假设”成立,可认为两组间的差异为不显著,常记为p>0.05。
若两者结果间的差异5次以下是由抽样误差造成的,则“无效假设”不成立,可认为两组间的差异为显著,常记为p≤0.05。如果p≤0.01,则认为两组间的差异为非常显著。
扩展资料:
显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的几率(P)水平的选择。所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异是抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。若两组间差异不是由抽样引起的,则“无效假设”不成立,可认为这种差异是显著的(即实验处理有效)。
参考资料来源:百度百科-显著性检验
展开全部
t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性。各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
t检验是对单个变量系数的显著性检验
F检验是对整个模型的拟合优度检验,即所有变量对被解释变量的显著性检验
F检验是对整个模型的拟合优度检验,即所有变量对被解释变量的显著性检验
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
应用回归方程进行预测和分析需要注意哪些问题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询