当代最伟大的代数几何大师是谁?(不算与上帝同在的)
3个回答
2011-11-12
展开全部
格罗滕迪克
A.Grothendieck
(一)
Alexandre Grothendieck,1928年3月28日出生于德国柏林的一个犹太人家庭。他的父亲在二战时被纳粹杀害。战争结束后,Grothendieck去法国学习数学,先后师从Bourbaki学派的分析大师Dieudonne和著名的泛函分析大师Laurent Schwartz,20几岁时Grothendieck就成为当时研究很热的拓扑向量空间理论的权威了。但是1957开始,Grothendieck的研究主要转向了代数几何和同调代数,1959年他成为了刚成立的巴黎高等科学研究所的主席。他的工作把Leray,Serre等人的代数几何的同调方法和层论发展到了一个崭新的高度。他创立的Scheme理论奠定了现代代数几何的基础。由于他的许多开创性的工作,使得代数几何这个古老的数学分支焕发出了新的活力,最终导致Deligne完全证明了Weil猜测,这被认为是20世纪纯粹数学最重大的成就之一。由于Grothendieck的领导,那段时期巴黎高等研究所是公认的世界代数几何研究中心,他也为此获得了1966年国际数学最高奖Fields奖。可能由于他年少时的战时经历,Grothendieck是一个激进的和平主义者,他
可以为了战争而放弃自己从事的数学研究。越战期间,他在河内的森林里为当地的学者讲授范畴论。1970年,只有42岁,正值研究顶峰的他彻底放弃了数学,也离开了巴黎高等研究所。后来在法国的Montpellier大学教书,直到60岁退休。他还说过要去欧洲西南部的比利牛斯山做个隐居的佛教徒。1988年正值他60大寿时,Grothendieck出人意料的谢绝了瑞典皇家科学院的向他颁发的Crafoord奖和25万美元的奖金。理由是他认为应该把这些钱花在年轻有为的数学家身上。尽管Grothendieck已经远离学术圈很久了,但他依然是公认的现代最伟大和最有影响力的数学家之一。他创立的现代代数几何博大精深的理论体系所带来的巨大变革,在几乎所有的核心数学分支中都能感受到。
翻开任何一本现代代数几何教材或专著,都会频繁的看到如Groth. topology Groth. cohomology,Groth. ring 等名词。每当这时,我都会想Grothendieck,
这位最令我们钦佩的大数学家,也许他此刻正默默无闻的生活在欧洲哪个很小的城镇里,但他留给人类的巨大财富无疑将永载史册!
(二)
“对于这些“纯粹”数学家来说,物质世界仅仅是幻象,只有精神世界才是永恒的。他们只需要一支铅笔、几张白纸,就可以凭着自己聪明的头脑, 在纯粹数
学的象牙塔中雕镂出一个辉煌的天地。” 六十年代是一个颇不安分的年代。这个时候的青年学生崇拜的偶像是毛泽东和切 格瓦拉。他们会戴着红袖箍,抬着格瓦拉的像,走上街头同荷枪实弹的军警对垒。这个时候的大学教授,似乎由于和学生接触比较多的缘故,也不太听话。 比如美国数学家、1966年Fields奖得主S Smale就曾多次公开抨击美苏的霸权主义政策。因为这,他受到了CIA的“关照”。而1966年莫斯科国际数学家大会期间,克格勃干脆把他“请”到了一辆小汽车里呆了一段时间。不过和Grothendieck比起来,Smale的所作所为倒还不算太出格。
Bourbaki是三十年代时由一批法国青年数学家建立的学派。它的首批成员都毕业于高等师范学校(Ecole Normale Supérieure),包括A.Weil、H.Cartan、J.Dieudonné、C.Chevalley、J.Delsarte等人。Grothendieck加入这个学派的时候,正值它的全盛时期。当时的Bourbaki学派除了老一辈的大师外,还有L.Schwartz、J.-P.Serre这样才华横溢的青年。在这里,Grothendieck接触到了数学的前沿,进而成长为新一代数学家中的佼佼者。Grothendieck起初研究泛函分析,他深刻地改变了这门学科的面貌。Dieudonné称Grothendieck的工作和S.Banach的工作一样,在泛函分析中留下了最强的印记。不过,Grothendieck最重要的工作还是代数几何。代数几何研究的是代数方程(组)的解所表示的图形。从R Descartes发明解析几何算起,这门学科已经有将近四百年的历史了。二十世纪三十年代,O.Zariski和B.L.van der Waerden把交换代数引进了代数几何。四十年代中期,Weil将代数几何彻底地建立在抽象代数的基础上,并提出了著名的Weil猜想。后来的小平邦彦(Kodaira)、F.Hirzebruch、J.-P.Serre等人也曾在这门学科中作出重大突破。五六十年代,Grothendieck对代数几何进行了彻底的革命,发表了十几本巨著, 建立了一套宏大而完整的“概型理论”。Grothendieck的工作堪称代数几何的颠峰,他的著作被誉为“Grothendieck圣经”。Grothendieck的理论就发挥了价值。在概型理论的基础上,数学家们取得了一个又一个令人瞠目的成就: Grothendieck第一次给出了著名的Riemann-Roch定理的代数证明。
它还导致了如下事件:
1973年,P.Deligne证明了Weil猜想(获1978菲尔兹奖);
1983年,G.Faltings证明了Mordell猜想(获1986菲尔兹奖);
1995年,A.Wiles证明了谷山-志村(Taniyama-Shimura)猜想,进而解决了有三百五十多年历史的费尔马大定理(Fermat's Last Theorem)(获1996菲尔兹特别奖) 。
这些成就代表着当代数学的最高水平,足以光彪千古。
20世纪的代数几何学涌现了许多天才和菲尔兹奖,但是上帝只有一个,就是Grothendieck。他的系列专著EGA是公认的代数几何圣经。
Grothendieck是一个彻底的无政府主义者及和平主义者。他经常向那些来找他请教数学问题的人作他的那一套政治宣传。六十年代,他被聘为法国高等科学研
究所(Institut des Hautes Etudes Scientifiques)的教授,但当他发现这个机构是由NATO(北大西洋公约组织)出资支持的时候,便毅然辞职回乡务农去了。1970年
的国际数学家大会上,苏联盲人数学家L Pontrjagin作关于“微分对策”的报告, 其中谈到了用导弹追踪飞机的问题。Grothendieck愤然走上台夺下话筒,抗议他在
数学会议上提到军事。 G Hardy曾说过:“真正的数学对战争毫无影响,……是一门‘无害而清白’的职业”。或许Grothendieck就是因为这个原因才选择了数学。但是Grothendieck逐渐失望地发现数学往往被用在军事上,象他所研究的代数几何就被用来编制密码,而且数学研究大多直接或间接得到军方支持。这显然与他的理想背道而驰。于是在1970年,他便永久地离开了他所喜爱的数学事业,转向了裁军活动和经营农场。到80年代,他干脆消失在这个肮脏的世界上,只有他的少数朋友知道他的住址,但这些朋友们都守口如瓶。至今,Grothendieck依然不知所终。隐逸之士古已有之,但如Grothendieck这般,不恋荣华,功成身退,则亘古罕有。
A.Grothendieck
(一)
Alexandre Grothendieck,1928年3月28日出生于德国柏林的一个犹太人家庭。他的父亲在二战时被纳粹杀害。战争结束后,Grothendieck去法国学习数学,先后师从Bourbaki学派的分析大师Dieudonne和著名的泛函分析大师Laurent Schwartz,20几岁时Grothendieck就成为当时研究很热的拓扑向量空间理论的权威了。但是1957开始,Grothendieck的研究主要转向了代数几何和同调代数,1959年他成为了刚成立的巴黎高等科学研究所的主席。他的工作把Leray,Serre等人的代数几何的同调方法和层论发展到了一个崭新的高度。他创立的Scheme理论奠定了现代代数几何的基础。由于他的许多开创性的工作,使得代数几何这个古老的数学分支焕发出了新的活力,最终导致Deligne完全证明了Weil猜测,这被认为是20世纪纯粹数学最重大的成就之一。由于Grothendieck的领导,那段时期巴黎高等研究所是公认的世界代数几何研究中心,他也为此获得了1966年国际数学最高奖Fields奖。可能由于他年少时的战时经历,Grothendieck是一个激进的和平主义者,他
可以为了战争而放弃自己从事的数学研究。越战期间,他在河内的森林里为当地的学者讲授范畴论。1970年,只有42岁,正值研究顶峰的他彻底放弃了数学,也离开了巴黎高等研究所。后来在法国的Montpellier大学教书,直到60岁退休。他还说过要去欧洲西南部的比利牛斯山做个隐居的佛教徒。1988年正值他60大寿时,Grothendieck出人意料的谢绝了瑞典皇家科学院的向他颁发的Crafoord奖和25万美元的奖金。理由是他认为应该把这些钱花在年轻有为的数学家身上。尽管Grothendieck已经远离学术圈很久了,但他依然是公认的现代最伟大和最有影响力的数学家之一。他创立的现代代数几何博大精深的理论体系所带来的巨大变革,在几乎所有的核心数学分支中都能感受到。
翻开任何一本现代代数几何教材或专著,都会频繁的看到如Groth. topology Groth. cohomology,Groth. ring 等名词。每当这时,我都会想Grothendieck,
这位最令我们钦佩的大数学家,也许他此刻正默默无闻的生活在欧洲哪个很小的城镇里,但他留给人类的巨大财富无疑将永载史册!
(二)
“对于这些“纯粹”数学家来说,物质世界仅仅是幻象,只有精神世界才是永恒的。他们只需要一支铅笔、几张白纸,就可以凭着自己聪明的头脑, 在纯粹数
学的象牙塔中雕镂出一个辉煌的天地。” 六十年代是一个颇不安分的年代。这个时候的青年学生崇拜的偶像是毛泽东和切 格瓦拉。他们会戴着红袖箍,抬着格瓦拉的像,走上街头同荷枪实弹的军警对垒。这个时候的大学教授,似乎由于和学生接触比较多的缘故,也不太听话。 比如美国数学家、1966年Fields奖得主S Smale就曾多次公开抨击美苏的霸权主义政策。因为这,他受到了CIA的“关照”。而1966年莫斯科国际数学家大会期间,克格勃干脆把他“请”到了一辆小汽车里呆了一段时间。不过和Grothendieck比起来,Smale的所作所为倒还不算太出格。
Bourbaki是三十年代时由一批法国青年数学家建立的学派。它的首批成员都毕业于高等师范学校(Ecole Normale Supérieure),包括A.Weil、H.Cartan、J.Dieudonné、C.Chevalley、J.Delsarte等人。Grothendieck加入这个学派的时候,正值它的全盛时期。当时的Bourbaki学派除了老一辈的大师外,还有L.Schwartz、J.-P.Serre这样才华横溢的青年。在这里,Grothendieck接触到了数学的前沿,进而成长为新一代数学家中的佼佼者。Grothendieck起初研究泛函分析,他深刻地改变了这门学科的面貌。Dieudonné称Grothendieck的工作和S.Banach的工作一样,在泛函分析中留下了最强的印记。不过,Grothendieck最重要的工作还是代数几何。代数几何研究的是代数方程(组)的解所表示的图形。从R Descartes发明解析几何算起,这门学科已经有将近四百年的历史了。二十世纪三十年代,O.Zariski和B.L.van der Waerden把交换代数引进了代数几何。四十年代中期,Weil将代数几何彻底地建立在抽象代数的基础上,并提出了著名的Weil猜想。后来的小平邦彦(Kodaira)、F.Hirzebruch、J.-P.Serre等人也曾在这门学科中作出重大突破。五六十年代,Grothendieck对代数几何进行了彻底的革命,发表了十几本巨著, 建立了一套宏大而完整的“概型理论”。Grothendieck的工作堪称代数几何的颠峰,他的著作被誉为“Grothendieck圣经”。Grothendieck的理论就发挥了价值。在概型理论的基础上,数学家们取得了一个又一个令人瞠目的成就: Grothendieck第一次给出了著名的Riemann-Roch定理的代数证明。
它还导致了如下事件:
1973年,P.Deligne证明了Weil猜想(获1978菲尔兹奖);
1983年,G.Faltings证明了Mordell猜想(获1986菲尔兹奖);
1995年,A.Wiles证明了谷山-志村(Taniyama-Shimura)猜想,进而解决了有三百五十多年历史的费尔马大定理(Fermat's Last Theorem)(获1996菲尔兹特别奖) 。
这些成就代表着当代数学的最高水平,足以光彪千古。
20世纪的代数几何学涌现了许多天才和菲尔兹奖,但是上帝只有一个,就是Grothendieck。他的系列专著EGA是公认的代数几何圣经。
Grothendieck是一个彻底的无政府主义者及和平主义者。他经常向那些来找他请教数学问题的人作他的那一套政治宣传。六十年代,他被聘为法国高等科学研
究所(Institut des Hautes Etudes Scientifiques)的教授,但当他发现这个机构是由NATO(北大西洋公约组织)出资支持的时候,便毅然辞职回乡务农去了。1970年
的国际数学家大会上,苏联盲人数学家L Pontrjagin作关于“微分对策”的报告, 其中谈到了用导弹追踪飞机的问题。Grothendieck愤然走上台夺下话筒,抗议他在
数学会议上提到军事。 G Hardy曾说过:“真正的数学对战争毫无影响,……是一门‘无害而清白’的职业”。或许Grothendieck就是因为这个原因才选择了数学。但是Grothendieck逐渐失望地发现数学往往被用在军事上,象他所研究的代数几何就被用来编制密码,而且数学研究大多直接或间接得到军方支持。这显然与他的理想背道而驰。于是在1970年,他便永久地离开了他所喜爱的数学事业,转向了裁军活动和经营农场。到80年代,他干脆消失在这个肮脏的世界上,只有他的少数朋友知道他的住址,但这些朋友们都守口如瓶。至今,Grothendieck依然不知所终。隐逸之士古已有之,但如Grothendieck这般,不恋荣华,功成身退,则亘古罕有。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询