三角形ABC中,内角A,B,C的对边分别是a,b,c,已知a,b,c成等比数列,且cosB=3/4.
2个回答
展开全部
1.a,b,c成等比数列,所以a*c=b^2
根据正弦定理,a/sinA=b/sinB=c/sinC
所以sinA=a/b*sinB,sinC=c/b*sinC
cotA+cotC=cosA/sinA+cosC/sinC
=(cosA*sinC+sinA*cosC)/sinA*sinC
=sin(A+C)/[(a/b*sinB)*(c/b*sinC)]
=sinB/[(a/b*sinB)*(c/b*sinC)]
=1/sinB
=4/(根号7)
2.a,b,c成等比数列,设公比为q,
则b=a*q,c=a*q^2
cosB=(a^2+c^2-b^2)/2*a*c
=(a^2+a^2*q^4-a^2*q^2)/2*a*a*q^2
=(1+q^4-q^2)/2*q^2
=3/4
化简为:2*q^4-5*q^2+2=0
解得:q=1/(根号2),或者q=根号2
向量BA点乘向量BC=a*c*cosB
=a*a*q^2*cosB
=3/2
将cosB和q代入,解得:a=2,此时q=1/(根号2),c=1,a+c=3
或者a=1,此时q=根号2,c=2,a+c=3
根据正弦定理,a/sinA=b/sinB=c/sinC
所以sinA=a/b*sinB,sinC=c/b*sinC
cotA+cotC=cosA/sinA+cosC/sinC
=(cosA*sinC+sinA*cosC)/sinA*sinC
=sin(A+C)/[(a/b*sinB)*(c/b*sinC)]
=sinB/[(a/b*sinB)*(c/b*sinC)]
=1/sinB
=4/(根号7)
2.a,b,c成等比数列,设公比为q,
则b=a*q,c=a*q^2
cosB=(a^2+c^2-b^2)/2*a*c
=(a^2+a^2*q^4-a^2*q^2)/2*a*a*q^2
=(1+q^4-q^2)/2*q^2
=3/4
化简为:2*q^4-5*q^2+2=0
解得:q=1/(根号2),或者q=根号2
向量BA点乘向量BC=a*c*cosB
=a*a*q^2*cosB
=3/2
将cosB和q代入,解得:a=2,此时q=1/(根号2),c=1,a+c=3
或者a=1,此时q=根号2,c=2,a+c=3
2007-08-25
展开全部
a,b,c成等比数列,则可表示为a,ar,ar^2
余弦定理:(ar)^2=a^2+(ar^2)^2-2a(ar^2)cosB
整理得2r^4-5r^2+2=0 r=1/√2 或 r=√2
所以三边的比为1:√2:2或者2:√2:1
因此不妨令a为最短边(若令c为最短边,结果一致)
从三角函数关系易得sinB=√7/4
通过正弦定理,sinA=√7/(4√2), sinC=√7/(2√2)
通过余弦定理,或sin^2+cos^2=1可以求出 cosA=5/(4√2), cosC=-1/(2√2)
cotA+cotC=5/√7-1/√7=4/√7
a*c*cosB=3/2 得ac=2, c=2a =>a=1, c=2 a+c=3
余弦定理:(ar)^2=a^2+(ar^2)^2-2a(ar^2)cosB
整理得2r^4-5r^2+2=0 r=1/√2 或 r=√2
所以三边的比为1:√2:2或者2:√2:1
因此不妨令a为最短边(若令c为最短边,结果一致)
从三角函数关系易得sinB=√7/4
通过正弦定理,sinA=√7/(4√2), sinC=√7/(2√2)
通过余弦定理,或sin^2+cos^2=1可以求出 cosA=5/(4√2), cosC=-1/(2√2)
cotA+cotC=5/√7-1/√7=4/√7
a*c*cosB=3/2 得ac=2, c=2a =>a=1, c=2 a+c=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询