已知角AOB=90度,OM是角AOB的平分线,点P是OM上的任意一点
已知∠AOB=90°,OM是∠AOB的平分线,点P是OM上的任意一点,点D是OB上的点连接PD,过点P做PC⊥PD,交直线OA于点C,连接CD交OM于点G(1)求证PC=...
已知∠AOB=90°,OM是∠AOB的平分线,点P是OM上的任意一点,点D是OB上的点连接PD,过点P做PC⊥PD,交直线OA于点C,连接CD交OM于点G (1)求证PC=PD (2)若PG=(根号3)PD/2,求△PDO与△PDG的面积比
展开
3个回答
2012-12-20
展开全部
.....................................................................................................................................................................................................................................................................................................................................................
.....................................................................................................................................................................................................................................................................................................................................................
.....................................................................................................................................................................................................................................................................................................................................................
.....................................................................................................................................................................................................................................................................................................................................................
.....................................................................................................................................................................................................................................................................................................................................................
展开全部
解:
1)作PE⊥OA于E,PF⊥OB于F,
∵OM是∠AOB的平分线
∴PE=PF
∵∠AOB=90°
∴PEOF是正方形
∵PC⊥PD
∴∠EPC+∠CPF=∠CPF+∠FPD
∴∠EPC=∠FPD
∴Rt△PEC≌Rt△PFD(HL)
∴PC=PD
2)
∵PC⊥PD,PC=PD
∴∠PDG= 45°
∵∠AOB=90°,OM是∠AOB的平分线
∴∠POD= 45°
∵∠DPG=∠OPD
∴△DPG∽△OPD
∴S△POD/S△PDG=(PD/PG)^2
=[PD/(√3PD/2)]^2
=1/(3/4)
=4/3
1)作PE⊥OA于E,PF⊥OB于F,
∵OM是∠AOB的平分线
∴PE=PF
∵∠AOB=90°
∴PEOF是正方形
∵PC⊥PD
∴∠EPC+∠CPF=∠CPF+∠FPD
∴∠EPC=∠FPD
∴Rt△PEC≌Rt△PFD(HL)
∴PC=PD
2)
∵PC⊥PD,PC=PD
∴∠PDG= 45°
∵∠AOB=90°,OM是∠AOB的平分线
∴∠POD= 45°
∵∠DPG=∠OPD
∴△DPG∽△OPD
∴S△POD/S△PDG=(PD/PG)^2
=[PD/(√3PD/2)]^2
=1/(3/4)
=4/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
1)作PE⊥OA于E,PF⊥OB于F,
∵OM是∠AOB的平分线
∴PE=PF
∵∠AOB=90°
∴PEOF是正方形
∵PC⊥PD
∴∠EPC+∠CPF=∠CPF+∠FPD
∴∠EPC=∠FPD
∴Rt△PEC≌Rt△PFD(HL)
∴PC=PD
2)
∵PC⊥PD,PC=PD
∴∠PDG= 45°
∵∠AOB=90°,OM是∠AOB的平分线
∴∠POD= 45°
∵∠DPG=∠OPD
∴△DPG∽△OPD
∴S△POD/S△PDG=(PD/PG)^2
=[PD/(√3PD/2)]^2
=1/(3/4)
=4/3
1)作PE⊥OA于E,PF⊥OB于F,
∵OM是∠AOB的平分线
∴PE=PF
∵∠AOB=90°
∴PEOF是正方形
∵PC⊥PD
∴∠EPC+∠CPF=∠CPF+∠FPD
∴∠EPC=∠FPD
∴Rt△PEC≌Rt△PFD(HL)
∴PC=PD
2)
∵PC⊥PD,PC=PD
∴∠PDG= 45°
∵∠AOB=90°,OM是∠AOB的平分线
∴∠POD= 45°
∵∠DPG=∠OPD
∴△DPG∽△OPD
∴S△POD/S△PDG=(PD/PG)^2
=[PD/(√3PD/2)]^2
=1/(3/4)
=4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询