已知角AOB=90度,OM是角AOB的平分线,点P是OM上的任意一点

已知∠AOB=90°,OM是∠AOB的平分线,点P是OM上的任意一点,点D是OB上的点连接PD,过点P做PC⊥PD,交直线OA于点C,连接CD交OM于点G(1)求证PC=... 已知∠AOB=90°,OM是∠AOB的平分线,点P是OM上的任意一点,点D是OB上的点连接PD,过点P做PC⊥PD,交直线OA于点C,连接CD交OM于点G (1)求证PC=PD (2)若PG=(根号3)PD/2,求△PDO与△PDG的面积比 展开
匿名用户
2012-12-20
展开全部
.....................................................................................................................................................................................................................................................................................................................................................
.....................................................................................................................................................................................................................................................................................................................................................
.....................................................................................................................................................................................................................................................................................................................................................
jjsd2011
2011-11-09 · TA获得超过1.6万个赞
知道大有可为答主
回答量:1853
采纳率:100%
帮助的人:1001万
展开全部
解:
1)作PE⊥OA于E,PF⊥OB于F,
∵OM是∠AOB的平分线
∴PE=PF
∵∠AOB=90°
∴PEOF是正方形
∵PC⊥PD
∴∠EPC+∠CPF=∠CPF+∠FPD
∴∠EPC=∠FPD
∴Rt△PEC≌Rt△PFD(HL)
∴PC=PD
2)
∵PC⊥PD,PC=PD
∴∠PDG= 45°
∵∠AOB=90°,OM是∠AOB的平分线
∴∠POD= 45°
∵∠DPG=∠OPD
∴△DPG∽△OPD
∴S△POD/S△PDG=(PD/PG)^2
=[PD/(√3PD/2)]^2
=1/(3/4)
=4/3
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
啊不对ly
2012-11-05 · TA获得超过195个赞
知道答主
回答量:185
采纳率:0%
帮助的人:53.2万
展开全部
解:
1)作PE⊥OA于E,PF⊥OB于F,
∵OM是∠AOB的平分线
∴PE=PF
∵∠AOB=90°
∴PEOF是正方形
∵PC⊥PD
∴∠EPC+∠CPF=∠CPF+∠FPD
∴∠EPC=∠FPD
∴Rt△PEC≌Rt△PFD(HL)
∴PC=PD
2)
∵PC⊥PD,PC=PD
∴∠PDG= 45°
∵∠AOB=90°,OM是∠AOB的平分线
∴∠POD= 45°
∵∠DPG=∠OPD
∴△DPG∽△OPD
∴S△POD/S△PDG=(PD/PG)^2
=[PD/(√3PD/2)]^2
=1/(3/4)
=4/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式