已知等比数列{an}首项{a1=3},且4a1,2a2,a3成等差数列,(1)求数列{an}的通项公

已知等比数列{an}首项{a1=3},且4a1,2a2,a3成等差数列,(1)求数列{an}的通项公式;(2)若bn=9n/an,求数列{bn}的前n项和Sn速度... 已知等比数列{an}首项{a1=3},且4a1,2a2,a3成等差数列,(1)求数列{an}的通项公式;(2)若bn=9n/an,求数列{bn}的前n项和Sn
速度
展开
 我来答
djh123ok
2011-11-10 · TA获得超过2.8万个赞
知道大有可为答主
回答量:2162
采纳率:12%
帮助的人:999万
展开全部
4a1+a1q²=2*2a1q,化简得4+q²=4q,解得q=2
an=2^(n-1)
(2)bn=9n/2^(n-1)
b1=9,b2=18/2,b3=27/2²……bn=9n/2^(n-1)
于是用错位相减法
sn=9[1/1+2/2+3/2²+4/2³+……+n/2^(n-1)]
2sn=9[2+2/1+3/2+4/2²+……+n/2^(n-2)]=18+9[2/1+3/2+4/2²+5/2³+……+n/2^(n-2)]
于是sn-2sn=-18+9[-1/1-1/2-1/2²-1/2^(n-2)+n/2^(n-1)]
-sn=-18-9[2-(n+2)/2^(n-1)]
sn=36-9(n+2)/2^(n-1)
drug2009
2011-11-10 · TA获得超过1.4万个赞
知道大有可为答主
回答量:6644
采纳率:100%
帮助的人:2694万
展开全部
a2=a1q,a3=a1q^2
4a1+a3=2*(2a2)
4+q^2=4q
q=2
a1=3
an=a1q^(n-1)=3*2^(n-1)

bn=9n/an=3n*/2^(n-1)
bn=3n/2^(n-1) 2bn=3n/2^(n-2)
bn-1=3(n-1)/2^(n-2) 2bn-1=3(n-1)/2^(n-3)
..
b2=3*2/2 2b2=3*2
b1=3 2b1=6
(2Sn-2b1)-(Sn-bn)=3*(1+1/2+..+1/2^(n-2))
Sn=3*(1-1/2^(n-1)/(1-1/2) +6 -3n/2^(n-1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式