二次函数y=x平方+bx+c的图像经过A(-1,0),B(3,0)两点,且交y轴于点C

设抛物线的顶点为M,求四边形ABMC的面积... 设抛物线的顶点为M,求四边形ABMC的面积 展开
zxcwlyc
2011-11-11 · TA获得超过1165个赞
知道答主
回答量:64
采纳率:0%
帮助的人:97.4万
展开全部

常规一点的方法:

y=x²+bx+c经过A、B

也就是A点,B点的坐标满足这个函数表达式

代入即可: 0=1-b+c

                   0=9+3b+c

解得:b=-2,c=-3

∴y=x²-2x-3

顶点M=(-b/2a,c-b²/4a)

(→记住对称轴为x=-b/2a,就是顶点横坐标,纵坐标将横坐标代入函数即可)

代进去就得到M(1,-4)

函数与y轴交点,就是x=0时的函数,代入,y=-3,交点C(0,-3)

[这时可以画个草图,把这4个点大致标出来,函数图象不要画了,因为只要求面积就好了]

【图帮你画好了,看一下吧】

要求的面积就是区域a、b、c的面积和,根据坐标,容易求出

(→割补法是求多边形面积很常用的方法,好好掌握)

Sa=1×3×½=3/2

Sb=(3+4)×1×½=7/2

Sc=2×4×½=4

所以S四边形ABMC=Sa+Sb+Sc=9

【在求函数的时候,还可以直接由A、B两点得出,因为给出的A、B比较特殊,是函数与x轴交点,根据二次函数零点式,可以直接得到二次函数为y=(x+1)(x-3),打开即可】

dennis_zyp
2011-11-10 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
即函数有两个零点-1及3,即b=-(-1+3)=-2, c=-1*3=-3
y=x^2-2x-3=(x-1)^2-4
x=0, y=-3 , C(0,-3)
顶点为M(1,-4)
M,C到X轴的垂足记为M', C'
ACC'面积=1/2*1*3=1.5
BMM'面积=1/2*4*(3-1)=4
MCC'M'面积=1/2*(3+4)*(3-1)=7
ABMC面积=1.5+4+7=12.5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shsycxj
2011-11-10 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2175
采纳率:0%
帮助的人:1091万
展开全部
y=x²+bx+c ∵图像经过A(-1,0),B(3,0)两点
∴1-b+c=0 9+3b+c=0 ∴b=﹣2 c=﹣3 ∴y=x²-2x-3
∵交y轴于点C ∴C(0,﹣3)
∵y=x²-2x-3=(x-1)²-4 抛物线的顶点为M ∴M(1,﹣4)
过点M作MN⊥x轴,垂足为N,则N(1,0)
S四边形ABMC=S△AOC+S梯形OCMN+S△MNB
=1/2×1×3+1/2×(3+4)×1+1/2×(3-1)×4
=9
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式