
已知函数f(x)=(根号3sinwx+coswx) coswx-1/2 (w>0) 的最小正周期为4π。 求f(x)的单调递增区间
1个回答
展开全部
f(x)=(√ 3sinwx+coswx)coswx-1/2
=2sin(wx+π/6)coswx-1/2
=sin(wx+π/6+wx)+sin(wx+π/6-wx)-1/2
=sin(2wx+π/6)+sinπ/6-1/2
=sin(2wx+π/6)
根据题意有:2π/2w=4π,所以w=1/4
所以:
f(x)=sin(x/2+π/6)
由正弦函数的递增区间得到:
2kπ-π/2<=x/2+π/6<=2kπ+π/2
即:
2kπ-2π/3<=x/2<=2kπ+π/3
所以:
2kπ-4π/3<=x<=2kπ+2π/3.
=2sin(wx+π/6)coswx-1/2
=sin(wx+π/6+wx)+sin(wx+π/6-wx)-1/2
=sin(2wx+π/6)+sinπ/6-1/2
=sin(2wx+π/6)
根据题意有:2π/2w=4π,所以w=1/4
所以:
f(x)=sin(x/2+π/6)
由正弦函数的递增区间得到:
2kπ-π/2<=x/2+π/6<=2kπ+π/2
即:
2kπ-2π/3<=x/2<=2kπ+π/3
所以:
2kπ-4π/3<=x<=2kπ+2π/3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询