在三角形ABC中,已知a=4,b=6,C=120度,求sinA的值
3个回答
展开全部
已知a=4,b=6,C=120°,由余弦定理得
c^2=a^2+b^2-2ab.cosC
将已知条件代入式中得c^2=4^2+6^2-2*4*6.cos120°,则c=√76
再由正弦定理得
a/sinA=c/sinC,将已知条件代入式中得
4/sinA=√76/sin120°,则sinA=√57/19
c^2=a^2+b^2-2ab.cosC
将已知条件代入式中得c^2=4^2+6^2-2*4*6.cos120°,则c=√76
再由正弦定理得
a/sinA=c/sinC,将已知条件代入式中得
4/sinA=√76/sin120°,则sinA=√57/19
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由余弦定理可知
-1/2=cosC=(a²+b²-c²)/(2ab)
c²=a²+b²+ab=76
c=2√19
由正弦定理可得
a/sinA=c/sinC
sinA=(asinC)/c=[4(√3/2)/(2√19)=(√3)/√19=(√57)/19
-1/2=cosC=(a²+b²-c²)/(2ab)
c²=a²+b²+ab=76
c=2√19
由正弦定理可得
a/sinA=c/sinC
sinA=(asinC)/c=[4(√3/2)/(2√19)=(√3)/√19=(√57)/19
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
cosC=(a²+b²-c²)/2ab=(16+36-c²)/48
cos120°=-1/2,所以-1/2=(16+36-c²)/48
解得c=2根号19
a/sinA=c/sinC
所以4/sinA=2根号19/sin120°
得sinA=(根号57)/19
cos120°=-1/2,所以-1/2=(16+36-c²)/48
解得c=2根号19
a/sinA=c/sinC
所以4/sinA=2根号19/sin120°
得sinA=(根号57)/19
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询