
椭圆x2/4+y2/7=1上一点p到直线L:3x-2y-16=0的距离最短的点的坐标是
1个回答
展开全部
x^2/4+y^2/7=1
则设x=2cosa,y=√7sina
所以距离d=|6cosa-2√7sina-16|/√(3^2+2^2)
=|2√7sina-6cosa+16|/√13
2√7sina-6cosa+16
=√[(2√7)^2+6^2]sin(a-b)+16
=8sin(a-b)+16
其中tanb=6/2√7
所以最小=-8+16=8
所以d最小=8√13/13
则设x=2cosa,y=√7sina
所以距离d=|6cosa-2√7sina-16|/√(3^2+2^2)
=|2√7sina-6cosa+16|/√13
2√7sina-6cosa+16
=√[(2√7)^2+6^2]sin(a-b)+16
=8sin(a-b)+16
其中tanb=6/2√7
所以最小=-8+16=8
所以d最小=8√13/13
追问
是点P的坐标,谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询