在△ABC中,AD=DB,AE=EC,线段DE即为△ABC的中位线,过E作EF//AB交BC于点F,过A作AG//BC交FE于点G.

(1)求线段DE,BC之间的位置关系和数量关系。(2)点F是BC的中点吗?(PS:我们还没有学中位线定理,而且没有学相似)... (1)求线段DE,BC之间的位置关系和数量关系。
(2)点F是BC的中点吗?
(PS:我们还没有学中位线定理,而且没有学相似)
展开
eomerans
2011-11-12 · TA获得超过1594个赞
知道小有建树答主
回答量:465
采纳率:0%
帮助的人:660万
展开全部
延长DE到H使EH=DE,由AE=CE、DE=EH、∠AED=∠CEH可知△AED≌△CEH,得AD=CH=BD,
且∠BAC=∠ACH,得AB∥CH,则CH与BD平行且相等,知BCHD是平行四边形,得BC∥DE,且BC=DH=2DE
由EF//AB得∠GAC=∠C,且∠AEG=∠CEF,AE=CE,可知△AEG≌△CEF,得AG=CF;
又EF//AB,AG//BC,得ABFG是平行四边形,得BF=AG=CF,即F是BC的中点
北风吹吹
2011-11-12 · TA获得超过239个赞
知道小有建树答主
回答量:323
采纳率:0%
帮助的人:146万
展开全部
首先你的图画错了,E点在AC中间,图中的E点应为G点。
DE=1/2BC;F点是BC的中点(用全等三角形或平行线定理)。
追问
详细过程
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
阳人绣风学沙其5442
2011-11-12 · TA获得超过6.7万个赞
知道大有可为答主
回答量:4.7万
采纳率:0%
帮助的人:6219万
展开全部
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式