已知向量a=(根号3sinx,cosx),b=(cosx,cosx),函数f(x)=2a·b-1
(1)求f(x)的对称轴,及单调递增区间;(2)当x∈[π/6,π/2]时,若f(x)=1,求x。(3)当x∈[0,π/2]时,求f(x)的值域。...
(1)求f(x)的对称轴,及单调递增区间;
(2)当x∈[π/6,π/2]时,若f(x)=1,求x。
(3)当x∈[0,π/2]时,求f(x)的值域。 展开
(2)当x∈[π/6,π/2]时,若f(x)=1,求x。
(3)当x∈[0,π/2]时,求f(x)的值域。 展开
1个回答
展开全部
解:
(1) f(x)=2a·b-1=2√3sinxcosx+2cos²x-1
=√3sin2x+cos2x
=sin(x+π/6)
当x+π/6=π/2+kπ 即 对称轴:x=π/3+kπ
当x+π/6∈[-π/2+2kπ,π/2+2kπ]时,f(x)单调递增,解得:x∈[-2π/3+2kπ,π/3+2kπ]
当x+π/6∈[π/2+2kπ,3/2π+2kπ]时,f(x)单调递减,解得:x∈[π/3+2kπ,4/3π+2kπ]
(2)因为 f(x)=1
所以 x+π/6=π/2+2kπ
x=π/3+2kπ
因为x∈[π/6,π/2]
所以x=π/3
(3)因为x∈[0,π/2]
所以 x+π/6∈[π/6,2/3π]
由函数图像可知:f(x)max=sin(π/2)=1,f(x)min=sin(2/3π)=-√3/2
所以,值域为:[-√3/2,1]
(1) f(x)=2a·b-1=2√3sinxcosx+2cos²x-1
=√3sin2x+cos2x
=sin(x+π/6)
当x+π/6=π/2+kπ 即 对称轴:x=π/3+kπ
当x+π/6∈[-π/2+2kπ,π/2+2kπ]时,f(x)单调递增,解得:x∈[-2π/3+2kπ,π/3+2kπ]
当x+π/6∈[π/2+2kπ,3/2π+2kπ]时,f(x)单调递减,解得:x∈[π/3+2kπ,4/3π+2kπ]
(2)因为 f(x)=1
所以 x+π/6=π/2+2kπ
x=π/3+2kπ
因为x∈[π/6,π/2]
所以x=π/3
(3)因为x∈[0,π/2]
所以 x+π/6∈[π/6,2/3π]
由函数图像可知:f(x)max=sin(π/2)=1,f(x)min=sin(2/3π)=-√3/2
所以,值域为:[-√3/2,1]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询