急求:C语言实现的迷宫问题代码!

以一个m*n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍.设计一个程序,对任意设定的迷宫,求出一条入口到出口的通路,或的出没有通路的结论.{基本要求}:(1)实现一... 以一个m*n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍.设计一个程序,对任意设定的迷宫,求出一条入口到出口的通路,或的出没有通路的结论.
{基本要求}:
(1)实现一个以链表作存储结构的栈类型,然后编写一个求解迷宫的非递归程序。求得的通路以三元组(i,j,d)的形式输出,其中:(i,j)指示迷宫中的一个坐标,d表示走到下一个坐标的方向.
(2)编写递归形式的算法,求迷宫中所有通路.
(3)以方阵形式输出迷宫及其通路
展开
 我来答
huhongsam
2007-08-27 · 超过21用户采纳过TA的回答
知道答主
回答量:98
采纳率:0%
帮助的人:61.3万
展开全部
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

struct node
{
int sign;//标识,0什么都不在,1在open中,2在closed中
int flag;//标志位 0/1,0可以走,1不可以走
int f,g,h;//判断函数
int x,y;//坐标
int old;//是否old节点,0非,1是
};

struct link
{
node fnode;
link *next;
link *pri;
};

link *open,*closed,*bestnode,*successor,*p,*q,*r,*s;

int maze_flag[7][7]={ {0,1,0,0,0,0,0},
{0,1,0,1,0,1,0},
{0,1,0,0,0,1,0},
{0,1,0,1,0,1,0},
{0,0,0,1,0,0,0},
{1,1,0,1,0,1,0},
{0,0,0,0,0,1,0}};//表示迷宫的数组,0可以走,1不可以走

node maze[7][7];

int judge(node n)//判断函数,判断n节点是否可以走
{
if(n.flag==1)
return(1);
else
return(0);
}

void in_open(node n)//将n节点放入open表
{
p=open;
while(p->next!=open)
{
if(n.f>=p->fnode.f)
{
p->next->pri=(link *)malloc(sizeof(link));
p->next->pri->pri=p;
p=p->next;
p->pri->next=p;
p->pri->pri->next=p->pri;
p=p->pri;
p->fnode.flag=n.flag;
p->fnode.f=n.f;
p->fnode.g=n.g;
p->fnode.h=n.h;
p->fnode.x=n.x;
p->fnode.y=n.y;
p->fnode.old=n.old;
p->fnode.sign=n.sign=1;
}
else
p=p->next;
}
open->pri=(link *)malloc(sizeof(link));
open->pri->pri=p;
open->pri->next=open;
p->next=open->pri;
p=p->next;
p->fnode.flag=n.flag;
p->fnode.f=n.f;
p->fnode.g=n.g;
p->fnode.h=n.h;
p->fnode.x=n.x;
p->fnode.y=n.y;
p->fnode.old=n.old;
p->fnode.sign=n.sign=1;
}

void out_open(node n)//将n节点从open表中移出
{
p=open;
while(p->next!=open)
{
if(n.f=p->fnode.f)
{
link *p1;
p1=p->next;
p->next=p->next->next;
p->next->pri=p;
free(p1);
n.sign=0;
}
else
p=p->next;
}
}

void in_closed(node n)//将n节点放入closed表
{
while(q->next!=closed)
{
if(n.f>=q->fnode.f)
{
q->next->pri=(link *)malloc(sizeof(link));
q->next->pri->pri=q;
q=q->next;
q->pri->next=p;
q->pri->pri->next=q->pri;
q=q->pri;
q->fnode.flag=n.flag;
q->fnode.f=n.f;
q->fnode.g=n.g;
q->fnode.h=n.h;
q->fnode.x=n.x;
q->fnode.y=n.y;
q->fnode.old=n.old;
q->fnode.sign=n.sign=2;
}
else
q=q->next;
}
closed->pri=(link *)malloc(sizeof(link));
closed->pri->pri=q;
closed->pri->next=closed;
q->next=closed->pri;
q=q->next;
q->fnode.flag=n.flag;
q->fnode.f=n.f;
q->fnode.g=n.g;
q->fnode.h=n.h;
q->fnode.x=n.x;
q->fnode.y=n.y;
q->fnode.old=n.old;
q->fnode.sign=n.sign=2;
}

void out_closed(node n)//将n节点从closed表中移出
{
q=closed;
while(q->next!=closed)
{
if(n.f=q->fnode.f)
{
link *q1;
q1=q->next;
q->next=q->next->next;
q->next->pri=q;
free(q1);
n.sign=0;
}
else
q=q->next;
}
}

void in_bestnode(node n)//将n节点设为bestnode节点
{
while(r->next!=bestnode)
{
if(n.f>=r->fnode.f)
{
r->next->pri=(link *)malloc(sizeof(link));
r->next->pri->pri=r;
r=r->next;
r->pri->next=r;
r->pri->pri->next=r->pri;
r=r->pri;
r->fnode.flag=n.flag;
r->fnode.f=n.f;
r->fnode.g=n.g;
r->fnode.h=n.h;
r->fnode.x=n.x;
r->fnode.y=n.y;
r->fnode.old=n.old;
}
else
r=r->next;
}
bestnode->pri=(link *)malloc(sizeof(link));
bestnode->pri->pri=r;
bestnode->pri->next=bestnode;
r->next=bestnode->pri;
r=r->next;
r->fnode.flag=n.flag;
r->fnode.f=n.f;
r->fnode.g=n.g;
r->fnode.h=n.h;
r->fnode.x=n.x;
r->fnode.y=n.y;
r->fnode.old=n.old;
}

void out_bestnode(node n)//将n节点的bestnode去掉
{
r=bestnode;
while(r->next!=bestnode)
{
if(n.f=p->fnode.f)
{
link *r1;
r1=r->next;
r->next=r->next->next;
r->next->pri=r;
free(r1);
}
else
r=r->next;
}
}

void in_successor(node n)//将n节点设置为successor节点
{
s=successor;
while(s->next!=successor)
{
if(n.f>=s->fnode.f)
{
s->next->pri=(link *)malloc(sizeof(link));
s->next->pri->pri=s;
s=p->next;
s->pri->next=s;
s->pri->pri->next=s->pri;
s=s->pri;
s->fnode.flag=n.flag;
s->fnode.f=n.f;
s->fnode.g=n.g;
s->fnode.h=n.h;
s->fnode.x=n.x;
s->fnode.y=n.y;
s->fnode.old=n.old;
}
else
s=s->next;
}
successor->pri=(link *)malloc(sizeof(link));
successor->pri->pri=s;
successor->pri->next=successor;
s->next=successor->pri;
s=s->next;
s->fnode.flag=n.flag;
s->fnode.f=n.f;
s->fnode.g=n.g;
s->fnode.h=n.h;
s->fnode.x=n.x;
s->fnode.y=n.y;
s->fnode.old=n.old;
}

void out_successor(node n)//将n节点的successor去掉
{
s=successor;
while(s->next!=successor)
{
if(n.f=p->fnode.f)
{
link *s1;
s1=s->next;
s->next=s->next->next;
s->next->pri=s;
free(s1);
}
else
s=s->next;
}
}

void print(link *n)//输出link类型的表n
{
link *forprint;
forprint=n;
printf("the key is ");
while(forprint->next!=n)
printf("(%d,%d)\n",forprint->fnode.x,forprint->fnode.y);
}

int main()
{
//初始化部分
//这部分的功能是将二维的整形数组赋值给node型的二维数组
int i=0,j=0;
for(i=0;i<7;i++)
for(j=0;j<7;j++)
{
maze[i][j].x=i;
maze[i][j].y=j;
maze[i][j].flag=maze_flag[i][j];
if(maze[i][j].flag==0)
{
maze[i][j].h=6-i+6-j;
maze[i][j].sign=maze[i][j].f=maze[i][j].g=maze[i][j].old=0;
}
else
maze[i][j].h=-1;
}
for(i=0;i<7;i++)//输出迷宫示意图
{
for(j=0;j<7;j++)
{
printf("%2d",maze_flag[i][j]);
}
printf("\n");
}
//这部分的功能是将open,closed,bestnode表初始化,都置为空表
p=open=(link *)malloc(sizeof(link));
open->next=open;
open->pri=open;
q=closed=(link *)malloc(sizeof(link));
closed->next=closed;
closed->pri=closed;
r=bestnode=(link *)malloc(sizeof(link));
bestnode->next=bestnode;
bestnode->pri=bestnode;
//将第一个元素即(0,0)节点放入open表,开始算法
in_open(maze[0][0]);
maze[0][0].f=maze[0][0].h;
link *s2;
s2=successor;

if(open->next!=open)//open表为空时则失败退出
{
while(1)
{
in_bestnode(open->fnode);//将open表的第一个元素放入bestnode中
in_closed(maze[open->fnode.x][open->fnode.y]);//将open表的第一个元素放入closed中
maze[open->fnode.x][open->fnode.y].g++;//将open表的第一个元素的g值加一,表示已经走了一步
out_open(maze[open->fnode.x][open->fnode.y]);//将open表的第一个元素删除

if(bestnode->fnode.x==6&&bestnode->fnode.y==6)//若bestnode是目标节点,则成功退出
{
printf("succes!!\nthen print the key:\n");
print(closed);
break;
}
else//若bestnode不是目标节点,则扩展其临近可以走的节点为successor
{
if(i==0||j==0||i==6||j==6)
{
if(i==0&&j==0)//若为(0,0),则判断右边和下边的元素
{
if(judge(maze[i][j+1])==0)
in_successor(maze[i][j+1]);
if(judge(maze[i+1][j])==0)
in_successor(maze[i+1][j]);
}
else if(i==0&&j==6)//若为(0,6),则判断左边和下边的元素
{
if(judge(maze[i-1][j])==0)
in_successor(maze[i-1][j]);
if(judge(maze[i+1][j])==0)
in_successor(maze[i+1][j]);
}
else if(i==6&&j==0)//若为(6,0),则判断左边和上边的元素
{
if(judge(maze[i-1][j])==0)
in_successor(maze[i-1][j]);
if(judge(maze[i][j-1])==0)
in_successor(maze[i][j-1]);
}
else if(i==6&&j==6)//若为(6,6),则判断左边和上边的元素
{
if(judge(maze[i-1][j])==0)
in_successor(maze[i-1][j]);
if(judge(maze[i][j-1])==0)
in_successor(maze[i][j-1]);
}
else if(i==0)//若为第一行的元素(不在角上),则判断左边,下边和右边
{
if(judge(maze[i][j+1])==0)
in_successor(maze[i][j+1]);
if(judge(maze[i][j-1])==0)
in_successor(maze[i][j-1]);
if(judge(maze[i+1][j])==0)
in_successor(maze[i+1][j]);
}
else if(i==6)//若为第七行的元素(不在角上),则判断左边,上边和右边
{
if(judge(maze[i][j+1])==0)
in_successor(maze[i][j+1]);
if(judge(maze[i][j-1])==0)
in_successor(maze[i][j-1]);
if(judge(maze[i-1][j])==0)
in_successor(maze[i-1][j]);
}
else if(j==0)//若为第一列的元素(不在角上),则判断右边,下边和上边
{
if(judge(maze[i+1][j])==0)
in_successor(maze[i+1][j]);
if(judge(maze[i-1][j])==0)
in_successor(maze[i-1][j]);
if(judge(maze[i][j+1])==0)
in_successor(maze[i][j+1]);
}
else if(j==6)//若为第七列的元素(不在角上),则判断左边,上边和上边
{
if(judge(maze[i+1][j])==0)
in_successor(maze[i+1][j]);
if(judge(maze[i-1][j])==0)
in_successor(maze[i-1][j]);
if(judge(maze[i][j-1])==0)
in_successor(maze[i][j-1]);
}
}
else//若为中将的元素,则判断四个方向的节点
{
if(judge(maze[i][j-1])==0)
in_successor(maze[i][j-1]);
if(judge(maze[i][j+1])==0)
in_successor(maze[i][j+1]);
if(judge(maze[i-1][j])==0)
in_successor(maze[i-1][j]);
if(judge(maze[i+1][j])==0)
in_successor(maze[i+1][j]);
}
}
while(s2->next!=successor)//对所有的successor节点进行下列操作
{
maze[s2->fnode.x][s2->fnode.y].g=bestnode->fnode.g+bestnode->fnode.h;//计算g(suc)=g(bes)+h(bes,suc)
if(s2->fnode.sign==1)//若在open表中,则置为old,记下较小的g,并从open表中移出,放入closed表中
{
s2->fnode.old=1;
if(s2->fnode.g<maze[s2->fnode.x][s2->fnode.y].g)
{
maze[s2->fnode.x][s2->fnode.y].g=s2->fnode.g;
maze[s2->fnode.x][s2->fnode.y].f=maze[s2->fnode.x][s2->fnode.y].g+maze[s2->fnode.x][s2->fnode.y].h;
out_open(maze[s2->fnode.x][s2->fnode.y]);
in_closed(maze[s2->fnode.x][s2->fnode.y]);
maze[s2->fnode.x][s2->fnode.y].old=0;
}
else
continue;
}
else if(s2->fnode.sign==2)//若在closed表中,则置为old,记下较小的g,并将old从closed表中移出,将较小的g的节点放入closed表中
{
s2->fnode.old=1;
if(s2->fnode.g<maze[s2->fnode.x][s2->fnode.y].g)
{
maze[s2->fnode.x][s2->fnode.y].g=s2->fnode.g;
maze[s2->fnode.x][s2->fnode.y].f=maze[s2->fnode.x][s2->fnode.y].g+maze[s2->fnode.x][s2->fnode.y].h;
out_closed(maze[s2->fnode.x][s2->fnode.y]);
in_closed(maze[s2->fnode.x][s2->fnode.y]);
maze[s2->fnode.x][s2->fnode.y].old=0;
}
else
continue;
}
else//若即不再open表中也不在closed表中,则将此节点放入open表中,并计算此节点的f值
{
in_open(maze[s2->fnode.x][s2->fnode.y]);
maze[s2->fnode.x][s2->fnode.y].f=maze[s2->fnode.x][s2->fnode.y].g+maze[s2->fnode.x][s2->fnode.y].h;
}
s2=s2->next;
}
s2=successor;
}
}
else
printf("error!!This maze does not have the answer!");
return(0);
}
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
houxuanfelix
2007-08-27
知道答主
回答量:32
采纳率:0%
帮助的人:24.4万
展开全部
这是个很常见的问题啊,你去找C语言描述的计算机专业的数据结构的教程,一般都有的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jackchongs
2007-08-28 · 超过14用户采纳过TA的回答
知道答主
回答量:71
采纳率:0%
帮助的人:46.4万
展开全部
佩服...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式