
在三角形ABC中,角C=90度,以AB上一点O为圆心,OA长为半径的圆,与BC相切于点D,AC,AB分别交于点E,F
(1)若AC=6,AB=10,求⊙O半径;(2)连接OE,ED,DF,EF,若四边形BDEF是平行四边形,试判断OFDE的形状,说明理由。...
(1)若AC=6,AB=10,求⊙O半径;(2)连接OE,ED,DF,EF, 若四边形BDEF是平行四边形,试判断OFDE的形状,说明理由。
展开
1个回答
展开全部
(1)因为 角C=90度,OD⊥BC
所以 OD//AC,
OD/AC=OB/AB
设 ⊙O半径=r 即 OD=OA=OF=OE=r
又 AC=6,AB=10 故: BC=10
所以 r/6=(10-r)/10
解得: r=15/4
(2)若四边形BDEF是平行四边形,EF=BD=2CD,即BO=2AO
所以 FO=FB=ED 又OF//ED,所以OFDE是平行四边形
由于OF=OE,所以OFDE是菱形。
希望对你有所帮助,祝你学习进步!
所以 OD//AC,
OD/AC=OB/AB
设 ⊙O半径=r 即 OD=OA=OF=OE=r
又 AC=6,AB=10 故: BC=10
所以 r/6=(10-r)/10
解得: r=15/4
(2)若四边形BDEF是平行四边形,EF=BD=2CD,即BO=2AO
所以 FO=FB=ED 又OF//ED,所以OFDE是平行四边形
由于OF=OE,所以OFDE是菱形。
希望对你有所帮助,祝你学习进步!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询