分式计算:1/(1-x) -1/(1+x)-2x/(1+x^2)+(-4x^3)/(1+x^4)=? 要过程

急急急!!!!... 急急急!!!! 展开
zxqsyr
2011-11-13 · TA获得超过14.4万个赞
知道大有可为答主
回答量:3.3万
采纳率:71%
帮助的人:1.6亿
展开全部
1/(1-x) -1/(1+x)-2x/(1+x^2)+(-4x^3)/(1+x^4)
= (1+x)/(1-x) (1+x)- (1-x)/ (1-x)(1+x)-2x/(1+x^2)+(-4x^3)/(1+x^4)
=[ (1+x)- (1-x)]/ (1-x^2)-2x/(1+x^2)+(-4x^3)/(1+x^4)
=(1+x- 1+x)/ (1-x^2)-2x/(1+x^2)+(-4x^3)/(1+x^4)
=2x/ (1-x^2)-2x/(1+x^2)+(-4x^3)/(1+x^4)
=2x(1+x^2)/ (1-x^2)(1+x^2)-2x(1-x^2)/(1+x^2)(1-x^2)+(-4x^3)/(1+x^4)
=[2x(1+x^2)-2x(1-x^2)]/(1-x^4)+(-4x^3)/(1+x^4)
=2x(1+x^2-1+x^2)/(1-x^4)+(-4x^3)/(1+x^4)
=2x*2x^2/(1-x^4)+(-4x^3)/(1+x^4)
=4x^3/(1-x^4)+(-4x^3)/(1+x^4)
=4x^3(1+x^4)/(1-x^4)(1+x^4)-4x^3(1-x^4)/(1+x^4)(1-x^4)
=[4x^3(1+x^4)-4x^3(1-x^4)]/(1+x^4)(1-x^4)
=[4x^3(1+x^4-1+x^4)]/(1+x^4)(1-x^4)
=4x^3*2x^4/(1-x^8)
=8x^7/(1-x^8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式