6个回答
展开全部
分析法:分析法是从题中所求问题出发,逐步找出要解决的问题所必须的已知条件的思考方法。
02、 综合法:综合法就是从题目中已知条件出发,逐步推算出要解决的问题的思考方法。
03、 分析、综合法:一方面要认真考虑已知条件,另一方面还要注意题目中要解决的问题是什么,这样思维才有明确的方向性和目的性。
04、 分解法:把一道复杂的应用题拆成几道基本的应用题,从中找到解题的线索。
05、 图解法:图解法是用画图或线段把题目听条件和问题明确地表示出来,然后“按图索骥”寻找解答应用题的方法。
06、 假设法:假设法就是解题时,对题目中的某些现象或关系做出适当的假设,然后,用事实与假设之间的矛盾中找到正确的解题方法。
例:冰箱厂生产一批冰箱,原计划每天生产800台,而实际每天比计划多生产了120台,结果比原计划提前3天完成了任务。实际用了多少天?解法一:(800+120)×3÷120—3=20(天)(这是一种常规的解法);解法二:假设原计划少生产3天,则共少生产了800×3=2400台冰箱。这时计划生产的天数就等于实际生产的天数,造成少生产2400台的原因是每天计划比实际少生产120台,所以实际生产天数为:2400÷120=20(天)即列式为:800×3÷120=20(天)。
07、 转化法:转化方法就是把某一个数学问题,通过数学变换,转化成另一个数学问题来处理,然后把它解答出来的方法。
例:一辆货车从甲城开往乙城需10小时,一辆客车从乙城开往甲城需6小时,两车同时出发,相向而行,已知甲、乙两城相距600千米,几小时后两车相遇?解法一:600÷(600÷10+600÷6)解法二:把两地路程看作单位“1”,货车的时速是1/10,客车的时速是1/6,依然是用路程除以速度和,得到相遇时间:1÷(1/10+1/6)
08、 倒推法(还原法):从条件的终结状态出发,运用加与减、乘与除之间的互逆关系,从后向前一步一步地推算,从而解决问题的方法,称为倒推法或还原法。
例:某仓库货物若干袋,第一次运出了1/3少4袋,第二次运出余下的一半少2袋,库中还剩106袋,仓库原有货物多少袋?【(106—2)×2—4】÷(1—1/3)=306(袋)
09、 找对应关系的方法:在某些数学题中,存在着一些相关的对应量,通过分析条件之间的某些数量的对应关系,实现未知向已知的转化,这种思考方法,可称为“对应法”。
例:一本书,第一天读了32页,第二天读了40页,剩下的页数占全书页数的1/4。这本书还剩下多少页没有读?(找出各相关对应量)
10、 替换法:“替换”就是等量代换。用一种量(或一种量的一部分)来代替和它相等的另一种量(或另一种量的一部分),从而减少问题中的数量个数,降低解题的难度,然后设法将这个被代换的量求出。
例:食堂三天用完一桶油,第一天用了6千克,第二天用了余下的3/7,第三天用的恰好是这桶油的一半。第二天和第三天共用油多少千克?(分析:6千克对应余下1/7即1-3/7-3/7,找到这个对应关系,余下的量正好是题目所求的第二天和第三天共用的油量:6÷(1—3/7-3/7)=42(千克)
11、 从变量中找不变量的解题方法:
(1) 变中有不变——和不变:例:甲、乙两个施工队共180人,从甲队抽出自己人数的2/11调到乙队后,两队人数则相等,求两队原来各有多少人?甲队:180÷2÷(1—2/11)=110(人)
(2) 变中有不变——差不变:例:甲储蓄2000元,乙储蓄400元。如果从现在开始,每人每月各存200元,几个月后甲储蓄的钱数是乙储蓄的钱数的3倍?(分析:甲比乙多储蓄1600元,而这1600则刚好是乙几个月后钱数的2倍,则列式为:【(2000—400)÷(3—1)—400】÷200=2(个))
(3) 变中有不变——某一部分量不变:例:要从含盐16%的盐水25千克中蒸发去一部分水,得到含盐40%的盐水,应当蒸发去多少千克水?(析:这道题的总量是盐水的重量,它是由盐和水两个部分量组成。盐水蒸发后,水的重量减少了,盐水的总重量也随它减少,浓度也随着发生了变化。但要看到变中有不变,盐的重量始终没变,抓住盐这个不变量入手分析,便可得出答案:25—25×16%÷40%=15(千克))
(4) 变中有不变——形变体不变:例:把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长5厘米的正方体铁块,熔铸成一个圆柱体,这个圆柱体底面直径为20厘米,高是多少厘米?(分析:形态虽然发生了变化,但是总体积却没有变化:(9×7×3+5×5×5)÷【3.14×(10×10)】=1厘米)五年级上册的组合图形也可以用这种方法来分析。
12、 构造法:在计算某些图形题时,把原来不易处理的,不规则的图形,通过平移、旋转、翻折后,重新构造成一个新的更便天处理的图形为解决问题,这个思考方法,称为构造法。
13、 列举法:数量关系比较复杂,很难列出算式或方程求解。我们就要根据题目的要求,把可能的答案一一列举出来,再进一步根据题目中的条件逐步排除非解或缩小范围,进行筛选出题目的答案。
例:有一个伍分币,4个个贰分币,8个壹分币,要拿8分钱,有几种拿法?
14、 消去法:在一道数学题中,含有两个未知数,在解题时,通过简单的运算,先消去一个未知数,再求另一个未知数。这种解题的思考方法称为消去法。
例:百货商店里,2支圆珠笔和3支钢笔共值6元6角,3支圆珠笔和3支钢笔共值7元2角。一支圆珠笔多少钱?
15、 设数法:有的题目含有某个不定的量,按照一般的解题思路,不易找出解题方法,如果我们把题目中某个不定量设定为具体的数,就可以使原题化抽象为具体,使难题变容易,这种解题的思考方法称为设数法。
例:小华参加爬山活动,从山脚爬到山顶后,按原路下山,上山时每分钟走20米,下山时每分钟走30米,求小华上、下山的平均速度。(分析:根据“总路程÷时间=平均速度”题中没有给出路程,可以设为600米。则列式为:600×2÷(600÷20+600÷30)=24(米/分))
02、 综合法:综合法就是从题目中已知条件出发,逐步推算出要解决的问题的思考方法。
03、 分析、综合法:一方面要认真考虑已知条件,另一方面还要注意题目中要解决的问题是什么,这样思维才有明确的方向性和目的性。
04、 分解法:把一道复杂的应用题拆成几道基本的应用题,从中找到解题的线索。
05、 图解法:图解法是用画图或线段把题目听条件和问题明确地表示出来,然后“按图索骥”寻找解答应用题的方法。
06、 假设法:假设法就是解题时,对题目中的某些现象或关系做出适当的假设,然后,用事实与假设之间的矛盾中找到正确的解题方法。
例:冰箱厂生产一批冰箱,原计划每天生产800台,而实际每天比计划多生产了120台,结果比原计划提前3天完成了任务。实际用了多少天?解法一:(800+120)×3÷120—3=20(天)(这是一种常规的解法);解法二:假设原计划少生产3天,则共少生产了800×3=2400台冰箱。这时计划生产的天数就等于实际生产的天数,造成少生产2400台的原因是每天计划比实际少生产120台,所以实际生产天数为:2400÷120=20(天)即列式为:800×3÷120=20(天)。
07、 转化法:转化方法就是把某一个数学问题,通过数学变换,转化成另一个数学问题来处理,然后把它解答出来的方法。
例:一辆货车从甲城开往乙城需10小时,一辆客车从乙城开往甲城需6小时,两车同时出发,相向而行,已知甲、乙两城相距600千米,几小时后两车相遇?解法一:600÷(600÷10+600÷6)解法二:把两地路程看作单位“1”,货车的时速是1/10,客车的时速是1/6,依然是用路程除以速度和,得到相遇时间:1÷(1/10+1/6)
08、 倒推法(还原法):从条件的终结状态出发,运用加与减、乘与除之间的互逆关系,从后向前一步一步地推算,从而解决问题的方法,称为倒推法或还原法。
例:某仓库货物若干袋,第一次运出了1/3少4袋,第二次运出余下的一半少2袋,库中还剩106袋,仓库原有货物多少袋?【(106—2)×2—4】÷(1—1/3)=306(袋)
09、 找对应关系的方法:在某些数学题中,存在着一些相关的对应量,通过分析条件之间的某些数量的对应关系,实现未知向已知的转化,这种思考方法,可称为“对应法”。
例:一本书,第一天读了32页,第二天读了40页,剩下的页数占全书页数的1/4。这本书还剩下多少页没有读?(找出各相关对应量)
10、 替换法:“替换”就是等量代换。用一种量(或一种量的一部分)来代替和它相等的另一种量(或另一种量的一部分),从而减少问题中的数量个数,降低解题的难度,然后设法将这个被代换的量求出。
例:食堂三天用完一桶油,第一天用了6千克,第二天用了余下的3/7,第三天用的恰好是这桶油的一半。第二天和第三天共用油多少千克?(分析:6千克对应余下1/7即1-3/7-3/7,找到这个对应关系,余下的量正好是题目所求的第二天和第三天共用的油量:6÷(1—3/7-3/7)=42(千克)
11、 从变量中找不变量的解题方法:
(1) 变中有不变——和不变:例:甲、乙两个施工队共180人,从甲队抽出自己人数的2/11调到乙队后,两队人数则相等,求两队原来各有多少人?甲队:180÷2÷(1—2/11)=110(人)
(2) 变中有不变——差不变:例:甲储蓄2000元,乙储蓄400元。如果从现在开始,每人每月各存200元,几个月后甲储蓄的钱数是乙储蓄的钱数的3倍?(分析:甲比乙多储蓄1600元,而这1600则刚好是乙几个月后钱数的2倍,则列式为:【(2000—400)÷(3—1)—400】÷200=2(个))
(3) 变中有不变——某一部分量不变:例:要从含盐16%的盐水25千克中蒸发去一部分水,得到含盐40%的盐水,应当蒸发去多少千克水?(析:这道题的总量是盐水的重量,它是由盐和水两个部分量组成。盐水蒸发后,水的重量减少了,盐水的总重量也随它减少,浓度也随着发生了变化。但要看到变中有不变,盐的重量始终没变,抓住盐这个不变量入手分析,便可得出答案:25—25×16%÷40%=15(千克))
(4) 变中有不变——形变体不变:例:把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长5厘米的正方体铁块,熔铸成一个圆柱体,这个圆柱体底面直径为20厘米,高是多少厘米?(分析:形态虽然发生了变化,但是总体积却没有变化:(9×7×3+5×5×5)÷【3.14×(10×10)】=1厘米)五年级上册的组合图形也可以用这种方法来分析。
12、 构造法:在计算某些图形题时,把原来不易处理的,不规则的图形,通过平移、旋转、翻折后,重新构造成一个新的更便天处理的图形为解决问题,这个思考方法,称为构造法。
13、 列举法:数量关系比较复杂,很难列出算式或方程求解。我们就要根据题目的要求,把可能的答案一一列举出来,再进一步根据题目中的条件逐步排除非解或缩小范围,进行筛选出题目的答案。
例:有一个伍分币,4个个贰分币,8个壹分币,要拿8分钱,有几种拿法?
14、 消去法:在一道数学题中,含有两个未知数,在解题时,通过简单的运算,先消去一个未知数,再求另一个未知数。这种解题的思考方法称为消去法。
例:百货商店里,2支圆珠笔和3支钢笔共值6元6角,3支圆珠笔和3支钢笔共值7元2角。一支圆珠笔多少钱?
15、 设数法:有的题目含有某个不定的量,按照一般的解题思路,不易找出解题方法,如果我们把题目中某个不定量设定为具体的数,就可以使原题化抽象为具体,使难题变容易,这种解题的思考方法称为设数法。
例:小华参加爬山活动,从山脚爬到山顶后,按原路下山,上山时每分钟走20米,下山时每分钟走30米,求小华上、下山的平均速度。(分析:根据“总路程÷时间=平均速度”题中没有给出路程,可以设为600米。则列式为:600×2÷(600÷20+600÷30)=24(米/分))
展开全部
分析法:分析法是从题中所求问题出发,逐步找出要解决的问题所必须的已知条件的思考方法。
02、 综合法:综合法就是从题目中已知条件出发,逐步推算出要解决的问题的思考方法。
03、 分析、综合法:一方面要认真考虑已知条件,另一方面还要注意题目中要解决的问题是什么,这样思维才有明确的方向性和目的性。
04、 分解法:把一道复杂的应用题拆成几道基本的应用题,从中找到解题的线索。
05、 图解法:图解法是用画图或线段把题目听条件和问题明确地表示出来,然后“按图索骥”寻找解答应用题的方法。
06、 假设法:假设法就是解题时,对题目中的某些现象或关系做出适当的假设,然后,用事实与假设之间的矛盾中找到正确的解题方法。
例:冰箱厂生产一批冰箱,原计划每天生产800台,而实际每天比计划多生产了120台,结果比原计划提前3天完成了任务。实际用了多少天?解法一:(800+120)×3÷120—3=20(天)(这是一种常规的解法);解法二:假设原计划少生产3天,则共少生产了800×3=2400台冰箱。这时计划生产的天数就等于实际生产的天数,造成少生产2400台的原因是每天计划比实际少生产120台,所以实际生产天数为:2400÷120=20(天)即列式为:800×3÷120=20(天)。
07、 转化法:转化方法就是把某一个数学问题,通过数学变换,转化成另一个数学问题来处理,然后把它解答出来的方法。
例:一辆货车从甲城开往乙城需10小时,一辆客车从乙城开往甲城需6小时,两车同时出发,相向而行,已知甲、乙两城相距600千米,几小时后两车相遇?解法一:600÷(600÷10+600÷6)解法二:把两地路程看作单位“1”,货车的时速是1/10,客车的时速是1/6,依然是用路程除以速度和,得到相遇时间:1÷(1/10+1/6)
08、 倒推法(还原法):从条件的终结状态出发,运用加与减、乘与除之间的互逆关系,从后向前一步一步地推算,从而解决问题的方法,称为倒推法或还原法。
例:某仓库货物若干袋,第一次运出了1/3少4袋,第二次运出余下的一半少2袋,库中还剩106袋,仓库原有货物多少袋?【(106—2)×2—4】÷(1—1/3)=306(袋)
09、 找对应关系的方法:在某些数学题中,存在着一些相关的对应量,通过分析条件之间的某些数量的对应关系,实现未知向已知的转化,这种思考方法,可称为“对应法”。
例:一本书,第一天读了32页,第二天读了40页,剩下的页数占全书页数的1/4。这本书还剩下多少页没有读?(找出各相关对应量)
10、 替换法:“替换”就是等量代换。用一种量(或一种量的一部分)来代替和它相等的另一种量(或另一种量的一部分),从而减少问题中的数量个数,降低解题的难度,然后设法将这个被代换的量求出。
例:食堂三天用完一桶油,第一天用了6千克,第二天用了余下的3/7,第三天用的恰好是这桶油的一半。第二天和第三天共用油多少千克?(分析:6千克对应余下1/7即1-3/7-3/7,找到这个对应关系,余下的量正好是题目所求的第二天和第三天共用的油量:6÷(1—3/7-3/7)=42(千克)
11、 从变量中找不变量的解题方法:
(1) 变中有不变——和不变:例:甲、乙两个施工队共180人,从甲队抽出自己人数的2/11调到乙队后,两队人数则相等,求两队原来各有多少人?甲队:180÷2÷(1—2/11)=110(人)
(2) 变中有不变——差不变:例:甲储蓄2000元,乙储蓄400元。如果从现在开始,每人每月各存200元,几个月后甲储蓄的钱数是乙储蓄的钱数的3倍?(分析:甲比乙多储蓄1600元,而这1600则刚好是乙几个月后钱数的2倍,则列式为:【(2000—400)÷(3—1)—400】÷200=2(个))
(3) 变中有不变——某一部分量不变:例:要从含盐16%的盐水25千克中蒸发去一部分水,得到含盐40%的盐水,应当蒸发去多少千克水?(析:这道题的总量是盐水的重量,它是由盐和水两个部分量组成。盐水蒸发后,水的重量减少了,盐水的总重量也随它减少,浓度也随着发生了变化。但要看到变中有不变,盐的重量始终没变,抓住盐这个不变量入手分析,便可得出答案:25—25×16%÷40%=15(千克))
(4) 变中有不变——形变体不变:例:把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长5厘米的正方体铁块,熔铸成一个圆柱体,这个圆柱体底面直径为20厘米,高是多少厘米?(分析:形态虽然发生了变化,但是总体积却没有变化:(9×7×3+5×5×5)÷【3.14×(10×10)】=1厘米)五年级上册的组合图形也可以用这种方法来分析。
12、 构造法:在计算某些图形题时,把原来不易处理的,不规则的图形,通过平移、旋转、翻折后,重新构造成一个新的更便天处理的图形为解决问题,这个思考方法,称为构造法。
13、 列举法:数量关系比较复杂,很难列出算式或方程求解。我们就要根据题目的要求,把可能的答案一一列举出来,再进一步根据题目中的条件逐步排除非解或缩小范围,进行筛选出题目的答案。
例:有一个伍分币,4个个贰分币,8个壹分币,要拿8分钱,有几种拿法?
14、 消去法:在一道数学题中,含有两个未知数,在解题时,通过简单的运算,先消去一个未知数,再求另一个未知数。这种解题的思考方法称为消去法。
例:百货商店里,2支圆珠笔和3支钢笔共值6元6角,3支圆珠笔和3支钢笔共值7元2角。一支圆珠笔多少钱?
15、 设数法:有的题目含有某个不定的量,按照一般的解题思路,不易找出解题方法,如果我们把题目中某个不定量设定为具体的数,就可以使原题化抽象为具体,使难题变容易,这种解题的思考方法称为设数法。
例:小华参加爬山活动,从山脚爬到山顶后,按原路下山,上山时每分钟走20米,下山时每分钟走30米,求小华上、下山的平均速度。(分析:根据“总路程÷时间=平均速度”题中没有给出路程,可以设为600米。则列式为:600×2÷(600÷20+600÷30)=24(米/分)
02、 综合法:综合法就是从题目中已知条件出发,逐步推算出要解决的问题的思考方法。
03、 分析、综合法:一方面要认真考虑已知条件,另一方面还要注意题目中要解决的问题是什么,这样思维才有明确的方向性和目的性。
04、 分解法:把一道复杂的应用题拆成几道基本的应用题,从中找到解题的线索。
05、 图解法:图解法是用画图或线段把题目听条件和问题明确地表示出来,然后“按图索骥”寻找解答应用题的方法。
06、 假设法:假设法就是解题时,对题目中的某些现象或关系做出适当的假设,然后,用事实与假设之间的矛盾中找到正确的解题方法。
例:冰箱厂生产一批冰箱,原计划每天生产800台,而实际每天比计划多生产了120台,结果比原计划提前3天完成了任务。实际用了多少天?解法一:(800+120)×3÷120—3=20(天)(这是一种常规的解法);解法二:假设原计划少生产3天,则共少生产了800×3=2400台冰箱。这时计划生产的天数就等于实际生产的天数,造成少生产2400台的原因是每天计划比实际少生产120台,所以实际生产天数为:2400÷120=20(天)即列式为:800×3÷120=20(天)。
07、 转化法:转化方法就是把某一个数学问题,通过数学变换,转化成另一个数学问题来处理,然后把它解答出来的方法。
例:一辆货车从甲城开往乙城需10小时,一辆客车从乙城开往甲城需6小时,两车同时出发,相向而行,已知甲、乙两城相距600千米,几小时后两车相遇?解法一:600÷(600÷10+600÷6)解法二:把两地路程看作单位“1”,货车的时速是1/10,客车的时速是1/6,依然是用路程除以速度和,得到相遇时间:1÷(1/10+1/6)
08、 倒推法(还原法):从条件的终结状态出发,运用加与减、乘与除之间的互逆关系,从后向前一步一步地推算,从而解决问题的方法,称为倒推法或还原法。
例:某仓库货物若干袋,第一次运出了1/3少4袋,第二次运出余下的一半少2袋,库中还剩106袋,仓库原有货物多少袋?【(106—2)×2—4】÷(1—1/3)=306(袋)
09、 找对应关系的方法:在某些数学题中,存在着一些相关的对应量,通过分析条件之间的某些数量的对应关系,实现未知向已知的转化,这种思考方法,可称为“对应法”。
例:一本书,第一天读了32页,第二天读了40页,剩下的页数占全书页数的1/4。这本书还剩下多少页没有读?(找出各相关对应量)
10、 替换法:“替换”就是等量代换。用一种量(或一种量的一部分)来代替和它相等的另一种量(或另一种量的一部分),从而减少问题中的数量个数,降低解题的难度,然后设法将这个被代换的量求出。
例:食堂三天用完一桶油,第一天用了6千克,第二天用了余下的3/7,第三天用的恰好是这桶油的一半。第二天和第三天共用油多少千克?(分析:6千克对应余下1/7即1-3/7-3/7,找到这个对应关系,余下的量正好是题目所求的第二天和第三天共用的油量:6÷(1—3/7-3/7)=42(千克)
11、 从变量中找不变量的解题方法:
(1) 变中有不变——和不变:例:甲、乙两个施工队共180人,从甲队抽出自己人数的2/11调到乙队后,两队人数则相等,求两队原来各有多少人?甲队:180÷2÷(1—2/11)=110(人)
(2) 变中有不变——差不变:例:甲储蓄2000元,乙储蓄400元。如果从现在开始,每人每月各存200元,几个月后甲储蓄的钱数是乙储蓄的钱数的3倍?(分析:甲比乙多储蓄1600元,而这1600则刚好是乙几个月后钱数的2倍,则列式为:【(2000—400)÷(3—1)—400】÷200=2(个))
(3) 变中有不变——某一部分量不变:例:要从含盐16%的盐水25千克中蒸发去一部分水,得到含盐40%的盐水,应当蒸发去多少千克水?(析:这道题的总量是盐水的重量,它是由盐和水两个部分量组成。盐水蒸发后,水的重量减少了,盐水的总重量也随它减少,浓度也随着发生了变化。但要看到变中有不变,盐的重量始终没变,抓住盐这个不变量入手分析,便可得出答案:25—25×16%÷40%=15(千克))
(4) 变中有不变——形变体不变:例:把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长5厘米的正方体铁块,熔铸成一个圆柱体,这个圆柱体底面直径为20厘米,高是多少厘米?(分析:形态虽然发生了变化,但是总体积却没有变化:(9×7×3+5×5×5)÷【3.14×(10×10)】=1厘米)五年级上册的组合图形也可以用这种方法来分析。
12、 构造法:在计算某些图形题时,把原来不易处理的,不规则的图形,通过平移、旋转、翻折后,重新构造成一个新的更便天处理的图形为解决问题,这个思考方法,称为构造法。
13、 列举法:数量关系比较复杂,很难列出算式或方程求解。我们就要根据题目的要求,把可能的答案一一列举出来,再进一步根据题目中的条件逐步排除非解或缩小范围,进行筛选出题目的答案。
例:有一个伍分币,4个个贰分币,8个壹分币,要拿8分钱,有几种拿法?
14、 消去法:在一道数学题中,含有两个未知数,在解题时,通过简单的运算,先消去一个未知数,再求另一个未知数。这种解题的思考方法称为消去法。
例:百货商店里,2支圆珠笔和3支钢笔共值6元6角,3支圆珠笔和3支钢笔共值7元2角。一支圆珠笔多少钱?
15、 设数法:有的题目含有某个不定的量,按照一般的解题思路,不易找出解题方法,如果我们把题目中某个不定量设定为具体的数,就可以使原题化抽象为具体,使难题变容易,这种解题的思考方法称为设数法。
例:小华参加爬山活动,从山脚爬到山顶后,按原路下山,上山时每分钟走20米,下山时每分钟走30米,求小华上、下山的平均速度。(分析:根据“总路程÷时间=平均速度”题中没有给出路程,可以设为600米。则列式为:600×2÷(600÷20+600÷30)=24(米/分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解答数学应用题的方法?有一下几种,算式解答,设未知数法,分析法,图表法,列举法。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
考察设数法的应用,2002年amc8数学竞赛第25题,高难度压轴题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询