求复合函数的高阶导数
Wearegivenafunctionf(x)=(x^2-3x+2)^(n)*cos(x^2),wherenisaconstant.Answerallpartsfromp...
We are given a function f(x) = (x^2 - 3x + 2)^(n) * cos(x^2), where n is a constant. Answer all parts from part (a) to part (b):
(a). what is f(5)(x), the 5th-order derivative of f(x)?
(b). Does there exist a general expression for f(n)(x), the n-th order derivative of f(x)? State your reasons clearly.
Thank you in advance. 展开
(a). what is f(5)(x), the 5th-order derivative of f(x)?
(b). Does there exist a general expression for f(n)(x), the n-th order derivative of f(x)? State your reasons clearly.
Thank you in advance. 展开
2个回答
展开全部
更多追问追答
追问
Thanks a lot! Just a further follow-up:
For v(x) = cos(x^2), is it possible to construct a general expression for V(n,x) = v(n)(x), the n-th order derivative of v(x)? (Please bear with my bad notations:P)?
Someone states that for u(x) = (x^2 - 3x + 2)^(n), its derivative can be written as
u(n)(x) = SUM(C(n,i) * C(n,i) * C(n, n - i) * (x - 1) ^ i * (x - 2) ^ (x - 2)^(n - i)), is it true?
追答
Not sure about cos(x^2), will take a look later.
For the other, there is, I think it's:
Please verify, where P for permutation, C for combination.
------------
yes, should be n-m+i, instead of n-m-i
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
英语不行啊。
更多追问追答
追问
sorry, 昨天时间有些紧,问题是(a)函数 f(x) = (x^2 - 3x + 2)^n * cos(x^2) (n是常数) 的5阶导数是什么?(可用表达式)(b)该函数的各阶导数是否有一般性的表达式。谢谢!
追答
可以用公式表示:
对于函数f(x)=g(x)*k(x)的n阶导数,有二次项展开定理公式类似的公式,即:
y'=C(n,r)[g(x)(r)]*[k(x)(n-r) ] r=0,1,,2,3....n的和。
g(x)(r),表示g(x)的r阶导数,k(x)(n-r)表示n-r阶导数。
对于本题r=5.g(x)=(x^2-3x+2)^n,k(x)=cosx^2.
y(5)=c(5,0)g(x)[(cosx^2)(5)]+c(5,1)[g(x)(1)][(cosx^2)(4)]+c(5,2)[g(x)(2)][(cosx^2)(3)]+c(5,3)[g(x)(3)][cos(x^2)(2)]+c(5,4)[g(x)(4)][(cosx^2)(1)]+c(5,5)[g(x)(5)](cosx^2).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询