用换元法求不定积分
∫(x/x+1)^1/2dx∫上面是3,下面是0∫1/(3+2cosx)dx∫上面是π/2,下面是0...
∫(x/x+1)^1/2dx ∫上面是3,下面是0
∫1/(3+2cosx)dx ∫上面是π/2,下面是0 展开
∫1/(3+2cosx)dx ∫上面是π/2,下面是0 展开
2个回答
展开全部
1、∫[0,3] (x/x+1)^1/2dx
设u=√[x/(x+1)],
x=u^2/(1-u^2),
dx=2udu/(1-u^2)^2,x=0,u=0,x=3,u=√3/2,
原式=∫[0,√3/2]u*2udu/(1-u^2)^2=2∫[0,√3/2]u^2du/(1-u^2)^2
设u=sint,du=costdt,u=0,t=0,u=√3/2,t=π/3,
原式=2∫[0,π/3](sint)^2*costdt/(cost)^4
=2∫[0,π/3][1-(cost)^2](sect)^3dt
=2∫[0,π/3][ (sect)^3-sect]dt
∫(sect)^3dt=∫sectdtant=sect*tant-∫tantdsect=sect*tant-∫(tant)^2sectdt
= sect*tant- ∫[(sect)^3-sect]dt
2∫(sect)^3dt= sect*tant+∫sectdt,
∫(sect)^3dt=( sect*tant+∫sectdt)/2,
原式= [0,π/3] ( sect*tant)/2-∫[0,π/3]∫sectdt)
= [0,π/3] ( sect*tant)/2-ln|tant+sect|[0,π/3]
=√3-ln(2+√3)。
2、∫[0,π/2]1/(3+2cosx)dx
令u=tan(x/2),x=2arctanu,
万能公式cosx=(1-u^2)/(1+u^2)
dx=2du/(1+u^2),
x=0,u=0,x=π/2,u=1,
原式=∫[0,1]2du/(1+u^2)/[3+2(1-u^2)/(1+u^2)]
=2∫[0,1]du/(5+u^2)
=2∫[0,1]du/(5+u^2)
=(2√5/5) ∫[0,1]d(u/√5)/[1+(u/√5)^2]
=(2√5/5)arctan(u/√5)[0,1]
=(2√5/5)arctan(√5/5)。
设u=√[x/(x+1)],
x=u^2/(1-u^2),
dx=2udu/(1-u^2)^2,x=0,u=0,x=3,u=√3/2,
原式=∫[0,√3/2]u*2udu/(1-u^2)^2=2∫[0,√3/2]u^2du/(1-u^2)^2
设u=sint,du=costdt,u=0,t=0,u=√3/2,t=π/3,
原式=2∫[0,π/3](sint)^2*costdt/(cost)^4
=2∫[0,π/3][1-(cost)^2](sect)^3dt
=2∫[0,π/3][ (sect)^3-sect]dt
∫(sect)^3dt=∫sectdtant=sect*tant-∫tantdsect=sect*tant-∫(tant)^2sectdt
= sect*tant- ∫[(sect)^3-sect]dt
2∫(sect)^3dt= sect*tant+∫sectdt,
∫(sect)^3dt=( sect*tant+∫sectdt)/2,
原式= [0,π/3] ( sect*tant)/2-∫[0,π/3]∫sectdt)
= [0,π/3] ( sect*tant)/2-ln|tant+sect|[0,π/3]
=√3-ln(2+√3)。
2、∫[0,π/2]1/(3+2cosx)dx
令u=tan(x/2),x=2arctanu,
万能公式cosx=(1-u^2)/(1+u^2)
dx=2du/(1+u^2),
x=0,u=0,x=π/2,u=1,
原式=∫[0,1]2du/(1+u^2)/[3+2(1-u^2)/(1+u^2)]
=2∫[0,1]du/(5+u^2)
=2∫[0,1]du/(5+u^2)
=(2√5/5) ∫[0,1]d(u/√5)/[1+(u/√5)^2]
=(2√5/5)arctan(u/√5)[0,1]
=(2√5/5)arctan(√5/5)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |