η*是非齐次线性方程组Ax=b的一个解,ξ1,ξ2,ξ3,...,ξn-r,是对应的齐次线性方程组的一个基础解系,求证
η*是非齐次线性方程组Ax=b的一个解,ξ1,ξ2,ξ3,...,ξn-r,是对应的齐次线性方程组的一个基础解系,求证η*,ξ1,ξ2,...ξn-r线性无关...
η*是非齐次线性方程组Ax=b的一个解,ξ1,ξ2,ξ3,...,ξn-r,是对应的齐次线性方程组的一个基础解系,求证
η*,ξ1,ξ2,...ξn-r线性无关 展开
η*,ξ1,ξ2,...ξn-r线性无关 展开
展开全部
证明: 设 kη*+k1ζ1+k2ζ2+...+kn-rζn-r = 0
等式两边左乘A, 由 Aη*=b, Aζi = 0 得
kb = 0.
因为 AX=b 是非齐次线性方程组, 故 b≠0
所以 k = 0.
所以 k1ζ1+k2ζ2+...+kn-rζn-r = 0
由 ζ1、 ζ2、....ζn-r 是AX=0的一个基础解系
所以 k1=k2=...=kn-r = 0.
所以 k=k1=k2=...=kn-r = 0.
所以 η*,ζ1,ζ2,...,ζn-r线性无关.
等式两边左乘A, 由 Aη*=b, Aζi = 0 得
kb = 0.
因为 AX=b 是非齐次线性方程组, 故 b≠0
所以 k = 0.
所以 k1ζ1+k2ζ2+...+kn-rζn-r = 0
由 ζ1、 ζ2、....ζn-r 是AX=0的一个基础解系
所以 k1=k2=...=kn-r = 0.
所以 k=k1=k2=...=kn-r = 0.
所以 η*,ζ1,ζ2,...,ζn-r线性无关.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询