求证;函数f(x)=lgx+2x-3在区间(1,2)内有零点,且在(0,+∝)上只有一个零点.

在线等,急,... 在线等,急, 展开
我才是无名小将
高粉答主

2011-11-14 · 每个回答都超有意思的
知道顶级答主
回答量:6.1万
采纳率:89%
帮助的人:2.4亿
展开全部
f(x)=lgx+2x-3
f(1)=-1<0
f(2)=lg2+1>0
因此函数在区间(1,2)内有零点

单调性的证明:任设x2>x1>0 则:x2-x1>0 x2/x1>1
f(x2)-f(x1)=lgx2+2x2-3-lgx1-2x+3
=lgx2/x1+(x2-x1)>0
可知f(x)在(0,+∝)上单调递增,
所以在(0,+∝)上只有一个零点.
百度网友ce8d01c
2011-11-14 · 知道合伙人教育行家
百度网友ce8d01c
知道合伙人教育行家
采纳数:20071 获赞数:87094
喜欢数学

向TA提问 私信TA
展开全部
f(x)=lgx+2x-3
f(1)=-1<0
f(2)=lg2+1>0
因此函数在区间(1,2)内有零点
f'(x)=1/(xln10)+2>0(在(0,+∝))
因此函数f(x)=lgx+2x-3在(0,+∝)上单增,因此只有一个零点
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式