高等代数问题疑惑,求解答!

请看图片:万分感谢... 请看图片:
万分感谢
展开
 我来答
西域牛仔王4672747
2011-11-17 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30557 获赞数:146216
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
用反证法。
设f(x)=(x-a1)(x-a2)....(x-an)-1=p(x)*q(x),其中 p(x)、q(x)是次数不小于1的整系数多项式。
因为 ai(i=1,2,3.。。。n)是互不相同的整数,
且p(ai)*q(ai)=-1(i=1,2,3,。。。n),
所以,p(ai)=1,q(ai)=-1 或 p(ai)=-1,q(ai)=1 (i=1,2,3,。。。,n)
因此,方程 [p(x)]^2=1 与 [q(x)]^2=1 均有n个不同的根a1,a2,。。。,an。
所以,由 f(x)的最高次项的系数为1可知,[p(x)]^2≡[q(x)]^2,
当n为奇数时,上式显然不可能成立,因为p(x)与q(x)的次数不可能相等。
当n为偶数时,只有p(x)与q(x)的次数都为n/2,且p(x)=1与p(x)=-1的根各有n/2个,
q(x)=1与q(x)=-1的根也各有n/2个,所以只有 p(x)=-q(x)。
但f(x)最高次项的系数为1,而 p(x)*q(x)=-[q(x)]^2的最高次项的系数为负数,矛盾。

因此,f(x)不可约。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式