设x服从泊松分布,求E[1/(x+1)]
展开全部
设X服从泊松分布,参数为λ,那么
EX=λ,DX=λ
所以 E[X(X-1)]
=E(X^2)-EX
=DX+(EX)^2-EX
=λ+λ^2-λ
=λ^2
也可以直接根据定义
E[X(X-1)]
=sum(n(n-1)*λ^n/n!*e^(-λ)),n=0..∞
=sum(λ^2*λ^(n-2)/(n-2)!*e^(-λ)),n=2..∞
=λ^2*sum(λ^n/n!*e^(-λ)),n=0..∞
=λ^2*1
=λ^2
扩展资料
泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。
泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询