如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线
若∠amn=90°(1)求证am=mn(2)若将(1)中的正方形abcd改为三角形abcn是∠acp的平分线上一点则当∠amn=60°时结论am=an是否还成立请说明理由...
若∠amn=90° (1)求证am=mn(2)若将(1)中的正方形abcd改为三角形abc n是∠acp的平分线上一点 则当∠amn=60°时 结论am=an是否还成立 请说明理由
展开
4个回答
展开全部
(1)∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=45°,
∴∠AEM=135°,
∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
在△AEM和△MCN中:
∵ {∠AEM=∠MCNAE=MC∠EAM=∠CMN
∴△AEM≌△MCN,
∴AM=MN;
(2)仍然成立.
在边AB上截取AE=MC,连接ME,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°,
∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=60°,
∴∠AEM=120°,
∵CN平分∠ACP,
∴∠PCN=60°,
∴∠AEM=∠MCN=120°,
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM,
∴△AEM≌△MCN,
∴AM=MN.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)由题中条件可得∠AEM=∠MCN=135°,再由两角夹一边即可判定三角形全等;
(2)还是利用两角夹一边证明其全等,证明方法同(1).解答:解:(1)∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=45°,
∴∠AEM=135°,
∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
在△AEM和△MCN中:
∵ {∠AEM=∠MCNAE=MC∠EAM=∠CMN
∴△AEM≌△MCN,
∴AM=MN;
(2)仍然成立.
在边AB上截取AE=MC,连接ME,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°,
∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=60°,
∴∠AEM=120°,
∵CN平分∠ACP,
∴∠PCN=60°,
∴∠AEM=∠MCN=120°,
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM,
∴△AEM≌△MCN,
∴AM=MN.
(2)还是利用两角夹一边证明其全等,证明方法同(1).解答:解:(1)∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=45°,
∴∠AEM=135°,
∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
在△AEM和△MCN中:
∵ {∠AEM=∠MCNAE=MC∠EAM=∠CMN
∴△AEM≌△MCN,
∴AM=MN;
(2)仍然成立.
在边AB上截取AE=MC,连接ME,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°,
∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=60°,
∴∠AEM=120°,
∵CN平分∠ACP,
∴∠PCN=60°,
∴∠AEM=∠MCN=120°,
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM,
∴△AEM≌△MCN,
∴AM=MN.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)由题中条件可得∠AEM=∠MCN=135°,再由两角夹一边即可判定三角形全等;
(2)还是利用两角夹一边证明其全等,证明方法同(1).解答:解:(1)∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=45°,
∴∠AEM=135°,
∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
在△AEM和△MCN中:
∵ {∠AEM=∠MCNAE=MC∠EAM=∠CMN
∴△AEM≌△MCN,
∴AM=MN;
(2)仍然成立.
在边AB上截取AE=MC,连接ME,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°,
∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=60°,
∴∠AEM=120°,
∵CN平分∠ACP,
∴∠PCN=60°,
∴∠AEM=∠MCN=120°,
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM,
∴△AEM≌△MCN,
∴AM=MN.
转载
(2)还是利用两角夹一边证明其全等,证明方法同(1).解答:解:(1)∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=45°,
∴∠AEM=135°,
∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
在△AEM和△MCN中:
∵ {∠AEM=∠MCNAE=MC∠EAM=∠CMN
∴△AEM≌△MCN,
∴AM=MN;
(2)仍然成立.
在边AB上截取AE=MC,连接ME,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°,
∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=60°,
∴∠AEM=120°,
∵CN平分∠ACP,
∴∠PCN=60°,
∴∠AEM=∠MCN=120°,
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM,
∴△AEM≌△MCN,
∴AM=MN.
转载
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询